Browsing by Author "Paduro Williamson, Esteban Andrés"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA partially averaged system to model neuron responses to interferential current stimulation(SPRINGER HEIDELBERG, 2023) Cerpa Jeria, Eduardo Esteban; Courdurier Bettancourt, Matías Alejandro; Hernandez, Esteban; Medina, Leonel E.; Paduro Williamson, Esteban AndrésThe interferential current (IFC) therapy is a noninvasive electrical neurostimulation technique intended to activate deep neurons using surface electrodes. In IFC, two independent kilohertz-frequency currents purportedly intersect where an interference field is generated. However, the effects of IFC on neurons within and outside the interference field are not completely understood, and it is unclear whether this technique can reliable activate deep target neurons without side effects. In recent years, realistic computational models of IFC have been introduced to quantify the effects of IFC on brain cells, but they are often complex and computationally costly. Here, we introduce a simplified model of IFC based on the FitzHugh-Nagumo (FHN) model of a neuron. By considering a modified averaging method, we obtain a non-autonomous approximated system, with explicit representation of relevant IFC parameters. For this approximated system we determine conditions under which it reliably approximates the complete FHN system under IFC stimulation, and we mathematically prove its ability to predict nonspiking states. In addition, we perform numerical simulations that show that the interference effect is observed only for a narrow set of IFC parameters and, in particular, for a beat frequency no higher than about 100 [Hz]. Our novel model tailored to the IFC technique contributes to the understanding of neurostimulation modalities using this type of signals, and can have implications in the design of noninvasive electrical stimulation therapies.
- ItemAnalysis of neural activation in time-dependent membrane capacitance models(Springer Nature, 2025) Courdurier Bettancourt, Matias Alejandro; Medina, Leonel E.; Paduro Williamson, Esteban AndrésMost models of neurons incorporate a capacitor to account for the marked capacitive behavior exhibited by the cell membrane. However, such capacitance is widely considered constant, thereby neglecting the possible effects of time-dependent membrane capacitance on neural excitability. This study presents a modified formulation of a neuron model with time-dependent membrane capacitance and shows that action potentials can be elicited for certain capacitance dynamics. Our main results can be summarized as: (a) it is necessary to have significant and abrupt variations in the capacitance to generate action potentials; (b) certain simple and explicitly constructed capacitance profiles with strong variations do generate action potentials; (c) forcing abrupt changes in the capacitance too frequently may result in no action potentials. These findings can have great implications for the design of ultrasound-based or other neuromodulation strategies acting through transiently altering the membrane capacitance of neurons.