Browsing by Author "Pérez Fuentes, Agustín Ignacio"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemCPAP improves regional lung strain rate and diaphragm velocity of relaxation in experimental self-inflicted lung injury(Springer Nature, 2025) Pérez Fuentes, Agustín Ignacio; Erranz, Benjamín; Reveco, Sonia; González, Carlos; Avilés Rojas, Nibaldo; Hurtado Sepúlveda, Daniel; Cruces, PabloBackground Strenuous respiratory effort has been proposed as a second hit in severe acute lung injury (ALI), introducing the concept of “patient self-inflicted lung injury” (P-SILI). In an experimental setting, noninvasive continuous positive airway pressure (CPAP) attenuates lung and diaphragmatic injury, but the underlying mechanisms remains elusive. Here we investigate the effects of noninvasive CPAP on global and regional lung strain and diaphragm velocity of contraction and relaxation in an experimental P-SILI model. Methods Lung injury was induced in Sprague Dawley rats through surfactant depletion followed by either three hours of standard oxygen therapy (Control group) or CPAP support (CPAP group). Subjects were assessed through inspiratory and expiratory muscle activation. Regional lung and diaphragmatic deformation amplitude (strain) and the rate of change (strain rate) maps were developed using a micro-computed tomography (µCT) scan. Morphometric tissue assessment was carried out to study biological damage. Results Compared with the Control group, the CPAP group resulted in: (1) higher SpO2 and lower respiratory rate, nasal flaring, inspiratory and expiratory muscle activation, and minute ventilation at the end of the study; (2) lower global and regional tidal ventilation at the beginning of the study; (3) lower regional inspiratory and expiratory lung strain rate over time; and (4) higher muscle area in the diaphragm morphometric analysis. Furthermore, intragroup analysis showed that only the CPAP group reduced the inspiratory and expiratory muscle activation, the global and regional expiratory lung strain rate and the regional velocity of relaxation of the diaphragm over time. Conclusions Standard oxygen therapy resulted in worse patterns of lung strain rate and diaphragm velocity of relaxation, consistent with P-SILI and load-induced diaphragm injury. CPAP resulted in improved lung function, decreased lung strain rate, and diaphragmatic relaxation velocity throughout the respiratory cycle. We conclude that CPAP promotes biomechanical protection in injured lungs and diaphragm, more noticeably during the expiratory phase.