Browsing by Author "Orlowski-Scherer, John"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemAtacama Cosmology Telescope: High-resolution component-separated maps across one third of the sky(2024) Coulton, William; Madhavacheril, Mathew S.; Duivenvoorden, Adriaan J.; Hill, J. Colin; Abril-Cabezas, Irene; Ade, Peter A. R.; Aiola, Simone; Alford, Tommy; Amiri, Mandana; Amodeo, Stefania; An, Rui; Atkins, Zachary; Austermann, Jason E.; Battaglia, Nicholas; Battistelli, Elia Stefano; Beall, James A.; Bean, Rachel; Beringue, Benjamin; Bhandarkar, Tanay; Biermann, Emily; Bolliet, Boris; Bond, J. Richard; Cai, Hongbo; Calabrese, Erminia; Calafut, Victoria; Capalbo, Valentina; Carrero, Felipe; Chesmore, Grace E.; Cho, Hsiao-Mei; Choi, Steve K.; Clark, Susan E.; Rosado, Rodrigo Cordova; Cothard, Nicholas F.; Coughlin, Kevin; Crowley, Kevin T.; Devlin, Mark J.; Dicker, Simon; Doze, Peter; Duell, Cody J.; Duff, Shannon M.; Dunkley, Jo; Dunner, Rolando; Fanfani, Valentina; Fankhanel, Max; Farren, Gerrit; Ferraro, Simone; Freundt, Rodrigo; Fuzia, Brittany; Gallardo, Patricio A.; Garrido, Xavier; Givans, Jahmour; Gluscevic, Vera; Golec, Joseph E.; Guan, Yilun; Halpern, Mark; Han, Dongwon; Hasselfield, Matthew; Healy, Erin; Henderson, Shawn; Hensley, Brandon; Hervias-Caimapo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Huber, Zachary B.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent; Isopi, Giovanni; Jense, Hidde T.; Keller, Ben; Kim, Joshua; Knowles, Kenda; Koopman, Brian J.; Kosowsky, Arthur; Kramer, Darby; Kusiak, Aleksandra; La Posta, Adrien; Lakey, Victoria; Lee, Eunseong; Li, Zack; Li, Yaqiong; Limon, Michele; Lokken, Martine; Louis, Thibaut; Lungu, Marius; MacCrann, Niall; MacInnis, Amanda; Maldonado, Diego; Maldonado, Felipe; Mallaby-Kay, Maya; Marques, Gabriela A.; van Marrewijk, Joshiwa; McCarthy, Fiona; McMahon, Jeff; Mehta, Yogesh; Menanteau, Felipe; Moodley, Kavilan; Morris, Thomas W.; Mroczkowski, Tony; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Scherer, John; Page, Lyman A.; Pandey, Shivam; Partridge, Bruce; Prince, Heather; Puddu, Roberto; Qu, Frank J.; Radiconi, Federico; Robertson, Naomi; Rojas, Felipe; Sakuma, Tai; Salatino, Maria; Schaan, Emmanuel; Schmitt, Benjamin L.; Sehgal, Neelima; Shaikh, Shabbir; Sherwin, Blake D.; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Simon, Sara; Sonka, Rita; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie; Switzer, Eric R.; Tampier, Niklas; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Ullom, Joel; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; Vargas, Cristian; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Wenzl, Lukas; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zheng, KaiwenObservations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-y distortion due to the thermal Sunyaev-Zel'dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multiwavelength observations to spectrally isolate one component. In this work, we present a new arc-minute-resolution Compton-y map, which traces out the line-of-sightintegrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13; 000 deg2). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) data release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the Planck satellite at frequencies between 30 and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing Planck componentseparated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB.
- ItemSimons Observatory: characterizing the Large Aperture Telescope Receiver with radio holography(2022) Chesmore, Grace E.; Harrington, Kathleen; Sierra, Carlos E.; Gallardo, Patricio A.; Sutariya, Shreya; Alford, Tommy; Adler, Alexandre E.; Bhandarkar, Tanay; Coppi, Gabriele; Dachlythra, Nadia; Golec, Joseph; Gudmundsson, Jon; Haridas, Saianeesh K.; Johnson, Bradley R.; Kofman, Anna M.; Iuliano, Jeffrey; Mcmahon, Jeff; Niemack, Michael D.; Orlowski-Scherer, John; Sarmiento, Karen Perez; Puddu, Roberto; Silva-Feaver, Max; Simon, Sara M.; Robe, Julia; Wollack, Edward J.; Xu, ZhileiWe present near-field radio holography measurements of the Simons Observatory Large Aperture Telescope Receiver optics. These measurements demonstrate that radio holography of complex millimeter-wave optical systems comprising cryogenic lenses, filters, and feed horns can provide detailed characterization of wave propagation before deployment. We used the measured amplitude and phase, at 4 K, of the receiver near-field beam pattern to predict two key performance parameters: 1) the amount of scattered light that will spill past the telescope to 300 K and 2) the beam pattern expected from the receiver when fielded on the telescope. These cryogenic measurements informed the removal of a filter, which led to improved optical efficiency and reduced sidelobes at the exit of the receiver. Holography measurements of this system suggest that the spilled power past the telescope mirrors will be less than 1%, and the main beam with its near sidelobes are consistent with the nominal telescope design. This is the first time such parameters have been confirmed in the lab prior to deployment of a new receiver. This approach is broadly applicable to millimeter and submillimeter instruments. (c) 2022 Optica Publishing Group
- ItemThe Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth(2024) Qu, Frank; Sherwin, Blake D.; Madhavacheril, Mathew S.; Han, Dongwon; Crowley, Kevin T.; Abril-Cabezas, Irene; Ade, Peter A. R.; Aiola, Simone; Alford, Tommy; Amiri, Mandana; Amodeo, Stefania; An, Rui; Atkins, Zachary; Austermann, Jason E.; Battaglia, Nicholas; Battistelli, Elia Stefano; Beall, James A.; Bean, Rachel; Beringue, Benjamin; Bhandarkar, Tanay; Biermann, Emily; Bolliet, Boris; Bond, J. Richard; Cai, Hongbo; Calabrese, Erminia; Calafut, Victoria; Capalbo, Valentina; Carrero, Felipe; Carron, Julien; Challinor, Anthony; Chesmore, Grace E.; Cho, Hsiao-Mei; Choi, Steve K.; Clark, Susan E.; Rosado, Rodrigo Cordova; Cothard, Nicholas F.; Coughlin, Kevin; Coulton, William; Dalal, Roohi; Darwish, Omar; Devlin, Mark J.; Dicker, Simon; Doze, Peter; Duell, Cody J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Dunner, Rolando; Fanfani, Valentina; Fankhanel, Max; Farren, Gerrit; Ferraro, Simone; Freundt, Rodrigo; Fuzia, Brittany; Gallardo, Patricio A.; Garrido, Xavier; Gluscevic, Vera; Golec, Joseph E.; Guan, Yilun; Halpern, Mark; Harrison, Ian; Hasselfield, Matthew; Healy, Erin; Henderson, Shawn; Hensley, Brandon; Hervias-Caimapo, Carlos; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Huber, Zachary B.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent; Isopi, Giovanni; Jense, Hidde T.; Keller, Ben; Kim, Joshua; Knowles, Kenda; Koopman, Brian J.; Kosowsky, Arthur; Kramer, Darby; Kusiak, Aleksandra; La Posta, Adrien; Lague, Alex; Lakey, Victoria; Lee, Eunseong; Li, Zack; Li, Yaqiong; Limon, Michele; Lokken, Martine; Louis, Thibaut; Lungu, Marius; MacCrann, Niall; MacInnis, Amanda; Maldonado, Diego; Maldonado, Felipe; Mallaby-Kay, Maya; Marques, Gabriela A.; McMahon, Jeff; Mehta, Yogesh; Menanteau, Felipe; Moodley, Kavilan; Morris, Thomas W.; Mroczkowski, Tony; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Scherer, John; Page, Lyman A.; Pandey, Shivam; Partridge, Bruce; Prince, Heather; Puddu, Roberto; Radiconi, Federico; Robertson, Naomi; Rojas, Felipe; Sakuma, Tai; Salatino, Maria; Schaan, Emmanuel; Schmitt, Benjamin L.; Sehgal, Neelima; Shaikh, Shabbir; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Simon, Sara; Sonka, Rita; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie; Switzer, Eric R.; Tampier, Niklas; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Ullom, Joel; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; van Marrewijk, Joshiwa; Vargas, Cristian; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Wenzl, Lukas; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zheng, KaiwenWe present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2 of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43 sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude of A lens = 1.013 +/- 0.023 relative to the Planck 2018 CMB power spectra best-fit Lambda CDM model and A lens = 1.005 +/- 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBL equivalent to sigma 8 omega m/0.30.25 of S8CMBL=0.818 +/- 0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813 +/- 0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Lambda CDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshifts z similar to 0.5-5 are thus fully consistent with Lambda CDM structure growth predictions based on CMB anisotropies probing primarily z similar to 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.
- ItemThe Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters(2024) Madhavacheril, Mathew S.; Qu, Frank J.; Sherwin, Blake D.; Maccrann, Niall; Li, Yaqiong; Abril-Cabezas, Irene; Ade, Peter A. R.; Aiola, Simone; Alford, Tommy; Amiri, Mandana; Amodeo, Stefania; An, Rui; Atkins, Zachary; Austermann, Jason E.; Battaglia, Nicholas; Battistelli, Elia Stefano; Beall, James A.; Bean, Rachel; Beringue, Benjamin; Bhandarkar, Tanay; Biermann, Emily; Bolliet, Boris; Bond, J. Richard; Cai, Hongbo; Calabrese, Erminia; Calafut, Victoria; Capalbo, Valentina; Carrero, Felipe; Challinor, Anthony; Chesmore, Grace E.; Cho, Hsiao-mei; Choi, Steve K.; Clark, Susan E.; Rosado, Rodrigo Cordova; Cothard, Nicholas F.; Coughlin, Kevin; Coulton, William; Crowley, Kevin T.; Dalal, Roohi; Darwish, Omar; Devlin, Mark J.; Dicker, Simon; Doze, Peter; Duell, Cody J.; Duff, Shannon M.; Duivenvoorden, Adriaan J.; Dunkley, Jo; Duenner, Rolando; Fanfani, Valentina; Fankhanel, Max; Farren, Gerrit; Ferraro, Simone; Freundt, Rodrigo; Fuzia, Brittany; Gallardo, Patricio A.; Garrido, Xavier; Givans, Jahmour; Gluscevic, Vera; Golec, Joseph E.; Guan, Yilun; Hall, Kirsten R.; Halpern, Mark; Han, Dongwon; Harrison, Ian; Hasselfield, Matthew; Healy, Erin; Henderson, Shawn; Hensley, Brandon; Hervias-Caimapo, Carlos; Hill, J. Colin; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Ho, Shuay-Pwu Patty; Huber, Zachary B.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Irwin, Kent; Isopi, Giovanni; Jense, Hidde T.; Keller, Ben; Kim, Joshua; Knowles, Kenda; Koopman, Brian J.; Kosowsky, Arthur; Kramer, Darby; Kusiak, Aleksandra; La Posta, Adrien; Lague, Alex; Lakey, Victoria; Lee, Eunseong; Li, Zack; Limon, Michele; Lokken, Martine; Louis, Thibaut; Lungu, Marius; Macinnis, Amanda; Maldonado, Diego; Maldonado, Felipe; Mallaby-Kay, Maya; Marques, Gabriela A.; Mcmahon, Jeff; Mehta, Yogesh; Menanteau, Felipe; Moodley, Kavilan; Morris, Thomas W.; Mroczkowski, Tony; Naess, Sigurd; Namikawa, Toshiya; Nati, Federico; Newburgh, Laura; Nicola, Andrina; Niemack, Michael D.; Nolta, Michael R.; Orlowski-Scherer, John; Page, Lyman A.; Pandey, Shivam; Partridge, Bruce; Prince, Heather; Puddu, Roberto; Radiconi, Federico; Robertson, Naomi; Rojas, Felipe; Sakuma, Tai; Salatino, Maria; Schaan, Emmanuel; Schmitt, Benjamin L.; Sehgal, Neelima; Shaikh, Shabbir; Sierra, Carlos; Sievers, Jon; Sifon, Cristobal; Simon, Sara; Sonka, Rita; Spergel, David N.; Staggs, Suzanne T.; Storer, Emilie; Switzer, Eric R.; Tampier, Niklas; Thornton, Robert; Trac, Hy; Treu, Jesse; Tucker, Carole; Ullom, Joel; Vale, Leila R.; Van Engelen, Alexander; Van Lanen, Jeff; van Marrewijk, Joshiwa; Vargas, Cristian; Vavagiakis, Eve M.; Wagoner, Kasey; Wang, Yuhan; Wenzl, Lukas; Wollack, Edward J.; Xu, Zhilei; Zago, Fernando; Zheng, KaiwenWe present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg(2). reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations sigma(8)=0.819 +/- 0.015 at 1.8% precision, S-8 equivalent to sigma(8)(Omega(m)/0.3)(0.5)=0.840 +/- 0.028 and the Hubble constant H-0=(68.3 +/- 1.1)kms(-1)Mpc(-1) at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: sigma(8)=0.812 +/- 0.013, S-8 equivalent to sigma(8)(Omega m/0.3)(0.5)=0.831 +/- 0.023 and H-0=(68.1 +/- 1.0)kms(-1)Mpc(-1). These measurements agree well with Lambda CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find S-8 from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1 sigma. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing z similar to 0.5-5 on mostly-linear scales and galaxy lensing at z similar to 0.5 on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of Lambda CDM, limiting the sum of the neutrino masses to & sum;m(nu)<0.12 eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the Lambda CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys
- ItemThe Atacama cosmology telescope: flux upper limits from a targeted search for extragalactic transients(2024) Hervias-Caimapo, Carlos; Naess, Sigurd; Hincks, Adam D.; Calabrese, Erminia; Devlin, Mark J.; Dunkley, Jo; Duenner, Rolando; Gallardo, Patricio A.; Hilton, Matt; Ho, Anna Y. Q.; Huffenberger, Kevin M.; Ma, Xiaoyi; Madhavacheril, Mathew S.; Niemack, Michael D.; Orlowski-Scherer, John; Page, Lyman A.; Partridge, Bruce; Puddu, Roberto; Salatino, Maria; Sifon, Cristobal; Staggs, Suzanne T.; Vargas, Cristian; Vavagiakis, Eve M.; Wollack, Edward J.We have performed targeted searches of known extragalactic transient events at millimetre wavelengths using nine seasons (2013-2021) of 98, 150, and 229 GHz Atacama Cosmology Telescope (ACT) observations that mapped similar to 40 per cent of the sky for most of the data volume. Our data cover 88 gamma-ray bursts (GRBs), 12 tidal disruption events (TDEs), and 203 other transients, including supernovae (SNe). We stack our ACT observations to increase the signal-to-noise ratio of the maps. In all cases but one, we do not detect these transients in the ACT data. The single candidate detection (event AT2019ppm), seen at similar to 5 sigma significance in our data, appears to be due to active galactic nuclei activity in the host galaxy coincident with a transient alert. For each source in our search we provide flux upper limits. For example, the medians for the 95 per cent confidence upper limits at 98 GHz are 15, 18, and 16 mJy for GRBs, SNe, and TDEs, respectively, in the first month after discovery. The projected sensitivity of future wide-area cosmic microwave background surveys should be sufficient to detect many of these events using the methods described in this paper.
- ItemThe Atacama Cosmology Telescope: Millimeter Observations of a Population of Asteroids or: ACTeroids(2024) Orlowski-Scherer, John; Venterea, Ricco C.; Battaglia, Nicholas; Naess, Sigurd; Bhandarkar, Tanay; Biermann, Emily; Calabrese, Erminia; Devlin, Mark; Dunkley, Jo; Hervias-Caimapo, Carlos; Gallardo, Patricio A.; Hilton, Matt; Hincks, Adam D.; Knowles, Kenda; Li, Yaqiong; Mcmahon, Jeffrey J.; Niemack, Michael D.; Page, Lyman A.; Partridge, Bruce; Salatino, Maria; Sievers, Jonathan; Sifon, Cristobal; Staggs, Suzanne; van Engelen, Alexander; Vargas, Cristian; Vavagiakis, Eve M.; Wollack, Edward J.We present fluxes and light curves for a population of asteroids at millimeter wavelengths, detected by the Atacama Cosmology Telescope (ACT) over 18,000 deg2 of the sky using data from 2017 to 2021. We utilize high cadence maps, which can be used in searching for moving objects such as asteroids and trans-Neptunian Objects, as well as for studying transients. We detect 170 asteroids with a signal-to-noise of at least 5 in at least one of the ACT observing bands, which are centered near 90, 150, and 220 GHz. For each asteroid, we compare the ACT measured flux to predicted fluxes from the near-Earth asteroid thermal model fit to WISE data. We confirm previous results that detected a deficit of flux at millimeter wavelengths. Moreover, we report a spectral characteristic to this deficit, such that the flux is relatively lower at 150 and 220 GHz than at 90 GHz. Additionally, we find that the deficit in flux is greater for S-type asteroids than for C-type.
- ItemThe Atacama Cosmology Telescope: Systematic Transient Search of 3 Day Maps(2023) Li, Yaqiong; Biermann, Emily; Naess, Sigurd; Aiola, Simone; An, Rui; Battaglia, Nicholas; Bhandarkar, Tanay; Calabrese, Erminia; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark; Duell, Cody J.; Duff, Shannon M.; Dunkley, Jo; Dunner, Rolando; Gallardo, Patricio A.; Guan, Yilun; Hervias-Caimapo, Carlos; Hincks, Adam D.; Hubmayr, Johannes; Huffenberger, Kevin M.; Hughes, John P.; Kosowsky, Arthur; Louis, Thibaut; Mallaby-Kay, Maya; Mcmahon, Jeff; Nati, Federico; Niemack, Michael D.; Orlowski-Scherer, John; Page, Lyman; Salatino, Maria; Sifon, Cristobal; Staggs, Suzanne T.; Vargas, Cristian; Vavagiakis, Eve M.; Wang, Yuhan; Wollack, Edward J.We conduct a systematic search for transients in 3 yr of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40% of the sky at three bands spanning from 77-277 GHz. Analysis of 3 day mean-subtracted sky maps, which were match filtered for point sources, yielded 29 transient detections. Eight of these transients are due to known asteroids, and three others were previously published. Four of these events occur in areas with poor noise models and thus we cannot be confident they are real transients. We are left with 14 new transient events occurring at 11 unique locations. All of these events are associated with either rotationally variable stars or cool stars. Ten events have flat or falling spectra indicating radiation from synchrotron emission. One event has a rising spectrum indicating a different engine for the flare.
- ItemThe Simons Observatory: modeling optical systematics in the Large Aperture Telescope(2021) Gudmundsson, Jon E.; Gallardo, Patricio A.; Puddu, Roberto; Dicker, Simon R.; Adler, Alexandre E.; Ali, Aamir M.; Bazarko, Andrew; Chesmore, Grace E.; Coppi, Gabriele; Cothard, Nicholas F.; Dachlythra, Nadia; Devlin, Mark; Dunner, Rolando; Fabbian, Giulio; Galitzki, Nicholas; Golec, Joseph E.; Ho, Shuay-Pwu Patty; Hargrave, Peter C.; Kofman, Anna M.; Lee, Adrian T.; Limon, Michele; Matsuda, Frederick T.; Mauskopf, Philip D.; Moodley, Kavilan; Nati, Federico; Niemack, Michael D.; Orlowski-Scherer, John; Page, Lyman A.; Partridge, Bruce; Puglisi, Giuseppe; Reichardt, Christian L.; Sierra, Carlos E.; Simon, Sara M.; Teply, Grant P.; Tucker, Carole; Wollack, Edward J.; Xu, Zhilei; Zhu, NingfengWe present geometrical and physical optics simulation results for the Simons Observatory Large Aperture Telescope. This work was developed as part of the general design process for the telescope, allowing us to evaluate the impact of various design choices on performance metrics and potential systematic effects. The primary goal of the simulations was to evaluate the final design of the reflectors and the cold optics that are now being built. We describe nonsequential ray tracing used to inform the design of the cold optics, including absorbers internal to each optics tube. We discuss ray tracing simulations of the telescope structure that allow us to determine geometries that minimize detector loading and mitigate spurious near-field effects that have not been resolved by the internal baffling. We also describe physical optics simulations, performed over a range of frequencies and field locations, that produce estimates of monochromatic far-field beam patterns, which in turn are used to gauge general optical performance. Finally, we describe simulations that shed light on beam sidelobes from panel gap diffraction. (C) 2021 Optical Society of America