• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ojeda Aguila, Maximiliano Eduardo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    VICTOR VECTORS @ DIPROMATS 2024: Propaganda Detection with LLM Paraphrasing and Machine Translation
    (CEUR-WS, 2024) Fernández, Miguel; Ojeda Aguila, Maximiliano Eduardo; Guevara, Lilly; Varela, Diego; Mendoza Rocha, Marcelo Gabriel; Barrón-Cedeno, Alberto
    Identifying propaganda in social media posts is an important task that can help to better understand the strategies applied by policy makers and stake holders when trying to convey their message to the general public. We describe our participation in DIPROMATS 2024 Task 1 on the automated detection and characterization of propaganda techniques and narratives from diplomats of major powers. We show an efficient way to utilize Large Language Models (LLMs) to paraphrase a sample of the training instances, to balance the class distribution in the datasets provided by the shared task. Our submission ranked 1st in Subtask-1a in English (ICM score of 0.2123) and 1st in the bilingual evaluation (ICM score of 0.2048). We also achieved top-3 rankings in Spanish and subtasks 1b and 1c.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback