Browsing by Author "Navedo, Juan G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBody Composition and Energy Savings by Hibernation: Lessons from the South American Marsupial Dromiciops gliroides(2022) Mejias, Carlos; Navedo, Juan G.; Sabat, Pablo; Franco, Lida M.; Bozinovic, Francisco; Nespolo, Roberto F.Hibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72 +/- 0.45 g, and lean mass was significantly reduced by 2.05 +/- 0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89 +/- 0.6 kJ d(-1) , representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41 degrees C +/- 0.2 degrees C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0 degrees C +/- 0.1 degrees C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37 +/- 0.19 J g(-1) h(-1) degrees C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.
- ItemOxidative status and metabolic profile in a long-lived bird preparing for extreme endurance migration(2019) Gutierrez, Jorge S.; Sabat, Pablo; Castaneda, Luis E.; Contreras, Carolina; Navarrete, Lucas; Pena-Villalobos, Isaac; Navedo, Juan G.The high metabolic activity associated with endurance flights and intense fuelling of migrant birds may produce large quantities of reactive oxygen species, which cause oxidative damage.Yet it remains unknown how long-lived birds prepare for oxidative challenges prior to extreme flights. We combined blood measurements of oxidative status and enzyme and fat metabolism in Hudsonian godwits (Limosa haemastica, a long-lived shorebird) before they embarked on non-stop flights longer than 10,000 km during their northbound migrations. We found that godwits increased total antioxidant capacity (TAC) and reduced oxidative damage (TBARS) as the pre-migratory season progressed, despite higher basal metabolic rates before departure. Elevations in plasma beta-hydroxybutyrate and uric acid suggest that lipid and protein breakdown supports energetic requirements prior to migration. Significant associations between blood mitochondrial cytochrome-c oxidase and plasma TAC (negative) and TBARS (positive) during winter indicate that greater enzyme activity can result in greater oxidative damage and antioxidant responses. However enzyme activity remained unchanged between winter and premigratory stages, so birds may be unable to adjust metabolic enzyme activity in anticipation of future demands. These results indicate that godwits enhance their oxidative status during migratory preparation, which might represent an adaptation to diminish the physiological costs of long-distance migration.