Browsing by Author "Nanda, Kamala Kanta"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGrowth direction and exposed facets of Cu/Cu2O nanostructures affect product selectivity in CO2 electroreduction(2022) Castro-Castillo, Carmen; Nanda, Kamala Kanta; Mardones-Herrera, Elias; Gazzano, Valeria; Ruiz-Leon, Domingo; Jesus Aguirre, Maria; Garcia, Gonzalo; Armijo, Francisco; Isaacs, MauricioThe electrochemical reduction of CO2 to fuels and value-added chemicals on metallic copper is an attractive strategy for valorizing CO2 emissions. However, favoring the CO2 reduction over hydrogen evolution and exclusive control of selectivity towards C1 or C2+ products by restructuring the copper surface is a major chal-lenge. Herein, we exploit the differential orientation of the exposed facets in copper nanostructures that can tune the product selectivity in CO2 electroreduction. The Cu nanostructure with predominant {111} orientation produce C1 products only upon CO2 electroreduction at an applied potential of-1.3 V vs. reversible hydrogen electrodes (RHE), with 66.57% Faradaic efficiency (FE) for methane. Whereas the vertically grown copper nanostructures that are oriented in {110} direction have higher dislocation density and show greater CO2 electroreduction activity (>95%) at the same applied potential, with FE towards ethylene 24.39% and that of oxygenates 41.31%. FIA-DEMS analysis provided experimental evidence of selectivity of methane over methanol at higher overpotentials indicating the mechanism of methane formation occurs via *COH intermediate. The ethylene formation at a potential-1.0 V vs. RHE or more negative to it suggests a common intermediate for methane and ethylene on the vertically grown copper nanostructures. This work advances the understanding between the product selectivity and the surface structure of the copper nanostructures in electrochemical CO2 reduction.
- ItemReduced Graphene Oxide Overlayer on Copper Nanocube Electrodes Steers the Selectivity Towards Ethanol in Electrochemical Reduction of Carbon Dioxide(2022) Mardones-Herrera, Elias; Castro-Castillo, Carmen; Nanda, Kamala Kanta; Veloso, Nicolas; Leyton, Felipe; Martinez, Francisco; Saez-Pizarro, Natalia; Ruiz-Leon, Domingo; Jesus Aguirre, Maria; Armijo, Francisco; Isaacs, MauricioDeveloping copper-based electrocatalysts that favor high-value multi-carbon oxygenates is desired, given their use as platform chemicals and as a direct fuel for transportation. Combining a CO-selective catalyst with copper shifts the selectivity of CO2 electroreduction toward C-2 products. Herein, we developed a reduced graphene oxide (rGO)-modified copper nanocube electrocatalyst that could shift the selectivity of CO2 electroreduction towards ethanol (Faradaic efficiency 76. 84 % at -0.9 V vs. reversible hydrogen electrode (RHE)). Spectroelectrochemical Raman analysis reveals a higher population of *C2HxOy intermediates at -0.9 V vs. RHE on the rGO-modified copper nanocube electrocatalyst surface, which coincides with the highest faradaic efficiency of ethanol upon CO2 electroreduction at the same potential. Our results demonstrate that the rGO modification can enhance ethanol selectivity through a probable tandem electrocatalysis mechanism and provide insights into controlling electrocatalytic activity and product selectivity in the CO2 electroreduction reaction.