Browsing by Author "Murphy, E. J."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemA 33GHz Survey of Local Major Mergers: Estimating the Sizes of the Energetically Dominant Regions from High-resolution Measurements of the Radio Continuum(2017) Barcos-Munoz, L.; Leroy, A. K.; Evans, A. S.; Condon, J.; Privon, G. C.; Thompson, T. A.; Armus, L.; Diaz-Santos, T.; Mazzarella, J. M.; Meier, D. S.; Momjian, E.; Murphy, E. J.; Ott, J.; Sanders, D. B.; Schinnerer, E.; Stierwalt, S.; Surace, J. A.; Walter, F.We present Very Large Array observations of the 33 GHz radio continuum emission from 22 local ultraluminous and luminous infrared (IR) galaxies (U/LIRGs). These observations have spatial (angular) resolutions of 30-720 pc (0.'' 07-0.'' 67) in a part of the spectrum that is likely to be optically thin. This allows us to estimate the size of the energetically dominant regions. We find half-light radii from 30 pc to 1.7 kpc. The 33 GHz flux density correlates well with the IR emission, and we take these sizes as indicative of the size of the region that produces most of the energy. Combining our 33 GHz sizes with unresolved measurements, we estimate the IR luminosity and star formation rate per area and the molecular gas surface and volume densities. These quantities span a wide range (4 dex) and include some of the highest values measured for any galaxy (e.g., Sigma(33 GHz)(SFR) <= 10(4.1) M-circle dot yr(-1) kpc(-2)) at least 13 sources appear Compton thick (N-H(33 GHz) >= 10(24) cm(-2)). Consistent with previous work, contrasting these data with observations of normal disk galaxies suggests a nonlinear and likely multivalued relation between star formation rate and molecular gas surface density, though this result depends on the adopted CO-to-H-2 conversion factor and the assumption that our 33 GHz sizes apply to the gas. Eleven sources appear to exceed the luminosity surface density predicted for starbursts supported by radiation pressure and supernova feedback; however, we note the need for more detailed observations of the inner disk structure. U/LIRGs with higher surface brightness exhibit stronger [C II] 158 mu m deficits, consistent with the suggestion that high energy densities drive this phenomenon.
- ItemA Herschel/PACS Far-infrared Line Emission Survey of Local Luminous Infrared Galaxies(IOP PUBLISHING LTD, 2017) Diaz Santos, T.; Armus, L.; Charmandaris, V.; Lu, N.; Stierwalt, S.; Stacey, G.; Malhotra, S.; van der Werf, P. P.; Howell, J. H.; Privon, G. C.; Mazzarella, J. M.; Goldsmith, P. F.; Murphy, E. J.; Barcos Munoz, L.; Linden, S. T.; Inami, H.; Larson, L.; Evans, A. S.; Appleton, P.; Iwasawa, K.; Lord, S.; Sanders, D. B.; Surace, J. A.We present an analysis of [O I](63), [O III](88), [N II](122), and [C II](158) far-infrared (FIR) fine-structure line observations obtained with Herschel/PACS, for similar to 240 local luminous infrared galaxies (LIRGs) in the Great Observatories All-sky LIRG Survey. We find pronounced declines ("deficits") of line-to-FIR continuum emission for [N II](122), [O I](63), and [C II](158) as a function of FIR color and infrared luminosity surface density, Sigma(IR). The median electron density of the ionized gas in LIRGs, based on the [N II](122)/[N II](205) ratio, is n(e) = 41 cm(-3). We find that the dispersion in the [C II](158) deficit of LIRGs is attributed to a varying fractional contribution of photodissociation regions (PDRs) to the observed [C II](158) emission, f ([C II](158)(PDR)) = [C II](158)(PDR)/C II](158), which increases from similar to 60% to similar to 95% in the warmest LIRGs. The [O I](63)/[C II](158)(PDR) ratio is tightly correlated with the PDR gas kinetic temperaturein sources where [O I] 63 is not optically thick or self-absorbed. For each galaxy, we derive the average PDR hydrogen density, n(H), and intensity of the interstellar radiation field, G, in units of G(0) and find G/n(H) ratios of similar to 0.1-50 G(0) cm(3), with ULIRGs populating the upper end of the distribution. There is a relation between G/n(H) and Sigma(IR), showing a critical break at Sigma(IR)* similar or equal to 5 x 10(10) L-circle dot kpc(-2). Below Sigma(IR)*, G/n(H) remains constant, similar or equal to 0.32G(0) cm(3), and variations in Sigma(IR) are driven by the number density of star-forming regions within a galaxy, with no change in their PDR properties. Above Sigma(IR)*, G/n(H) increases rapidly with Sigma(IR), signaling a departure from the typical PDR conditions found in normal star-forming galaxies toward more intense/harder radiation fields and compact geometries typical of starbursting sources.
- ItemAn ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field South: radio properties and the far-infrared/radio correlation(2014) Thomson, A. P.; Ivison, R. J.; Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Arumugam, V.; Alexander, D. M.; Beelen, A.; Brandt, W. N.; Chandra, I.; Dannerbauer, H.; Greve, T. R.; Hodge, J. A.; Ibar, E.; Karim, A.; Murphy, E. J.; Schinnerer, E.; Sirothia, S.; Walter, F.; Wardlow, J. L.; van der Werf, P.We present a study of the radio properties of 870 mu m-selected submillimetre galaxies (SMGs), observed at high resolution with Atacama Large Millimeter Array (ALMA) in the Extended Chandra Deep Field South. From our initial sample of 76 ALMA SMGs, we detect 52 SMGs at >3 sigma significance in Karl G. Jansky Very Large Array 1400 MHz imaging, of which 35 are also detected at >3 sigma in new 610 MHz Giant Metre-Wave Radio Telescope imaging. Within this sample of radio-detected SMGs, we measure a median radio spectral index a alpha(1400)(610) = -0.79 +/- 0.06, (with inter-quartile range alpha = [-1.16, -0.56]) and investigate the far-infrared/radio correlation via the parameter q(IR), the logarithmic ratio of the rest-frame 8-1000 mu m flux and monochromatic radio flux. Our median q(IR) = 2.56 +/- 0.05 (inter-quartile range q(IR) = [2.42, 2.78]) is higher than that typically seen in single-dish 870 mu m-selected sources (q(IR) similar to 2.4), which may reflect the fact that our ALMA-based study is not biased to radio-bright counterparts, as previous samples were. Finally, we search for evidence that q(IR) and alpha evolve with age in a codependent manner, as predicted by starburst models: the data populate the predicted region of parameter space, with the stellar mass tending to increase along tracks of q(IR) versus alpha in the direction expected, providing the first observational evidence in support of these models.
- ItemExcitation Mechanisms for HCN (1-0) and HCO+ (1-0) in Galaxies from the Great Observatories All-sky LIRG Survey.(2015) Privon, G. C.; Treister, Ezequiel; Herrero-Illana, R.; Evans, Aaron S.; Iwasawa, K.; Perez-Torres, M. A.; Armus, Lee; Díaz-Santos, T.; Murphy, E. J.; Stierwalt, S.; Aalto, S.
- ItemMolecular gas and dust properties of galaxies from the Great Observatories All-sky LIRG Survey(2019) Herrero-Illana, R.; Privon, G. C.; Evans, A. S.; Diaz-Santos, T.; Perez-Torres, M. A.; Alberdi, A.; Iwasawa, K.; Armus, L.; Aalto, S.; Mazzarella, J.; Chu, J.; Sanders, D. B.; Barcos-Munoz, L.; Charmandaris, V; Linden, S. T.; Yoon, I; Frayer, D. T.; Inami, H.; Kim, D-C; Borish, H. J.; Conway, J.; Murphy, E. J.; Song, Y.; Stierwalt, S.; Surace, J.We present IRAM-30 m Telescope (CO)-C-12 and (CO)-C-13 observations of a sample of 55 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) in the local universe. This sample is a subset of the Great Observatory All-Sky LIRG Survey (GOALS), for which we use ancillary multi-wavelength data to better understand their interstellar medium and star formation properties. Fifty-three (96%) of the galaxies are detected in (CO)-C-12, and 29 (52%) are also detected in (CO)-C-13 above a 3 sigma level. The median full width at zero intensity (FWZI) velocity of the CO line emission is 661 km s(-1), and similar to 54% of the galaxies show a multi-peak CO profile. Herschel photometric data is used to construct the far-IR spectral energy distribution of each galaxy, which are fit with a modified blackbody model that allows us to derive dust temperatures and masses, and infrared luminosities. We make the assumption that the gas-to-dust mass ratio of (U)LIRGs is comparable to local spiral galaxies with a similar stellar mass (i.e., gas/dust of mergers is comparable to their progenitors) to derive a CO-to-H-2 conversion factor of = 1.8(-0.8)(+1.3) M-circle dot (K km s(-1) pc(2))(-1); such a value is comparable to that derived for (U)LIRGs based on dynamical mass arguments. We derive gas depletion times of 400 600 Myr for the (U)LIRGs, compared to the 1.3 Gyr for local spiral galaxies. Finally, we re-examine the relationship between the (CO)-C-12/(CO)-C-13 ratio and dust temperature, confirming a transition to elevated ratios in warmer systems.
- ItemSPT 0538-50: PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF A STRONGLY LENSED DUSTY STAR-FORMING GALAXY AT z=2.8(2013) Bothwell, M. S.; Aguirre, J. E.; Chapman, S. C.; Marrone, D. P.; Vieira, J. D.; Ashby, M. L. N.; Aravena, M.; Benson, B. A.; Bock, J. J.; Bradford, C. M.; Brodwin, M.; Carlstrom, J. E.; Crawford, T. M.; De Breuck, C.; Downes, T. P.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Holder, G. P.; Holzapfel, W. L.; Ibar, E.; Ivison, R.; Kamenetzky, J.; Keisler, R.; Lupu, R. E.; Ma, J.; Malkan, M.; McIntyre, V.; Murphy, E. J.; Nguyen, H. T.; Reichardt, C. L.; Rosenman, M.; Spilker, J. S.; Stalder, B.; Stark, A. A.; Strandet, M.; Vernet, J.; Weiss, A.; Welikala, N.We present observations of SPT-S J053816-5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538-50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538-50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538-50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21+/-4), we derive the intrinsic properties of SPT 0538-50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and-using molecular line fluxes-the excitation conditions within the interstellar medium. The derived physical properties argue that we arewitnessing compact, merger-driven star formation in SPT 0538-50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch.
