• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Moya-Sierralta, C."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A lack of Lyman α emitters within 5 Mpc of a luminous quasar in an overdensity at z=6.9: Potential evidence of negative quasar feedback at protocluster scales
    (2024) Lambert, Trystan S.; Assef, R. J.; Mazzucchelli, C.; Banados, E.; Aravena, M.; Barrientos, F.; Gonzalez-Lopez, J.; Hu, W.; Infante, L.; Malhotra, S.; Moya-Sierralta, C.; Rhoads, J.; Valdes, F.; Wang, J.; Wold, I. G. B.; Zheng, Z.
    High-redshift quasars are thought to live in the densest regions of space, which should be made evident by an overdensity of galaxies around them. However, campaigns to identify these overdensities by searching for Lyman-break galaxies (LBGs) and Lyman alpha emitters (LAEs) have had mixed results. These may be explained by either the small field of view of some of the experiments, the broad redshift ranges targeted by LBG searches, and the inherently high uncertainty of quasar redshifts estimated from ultraviolet emission lines, which makes it difficult to place the Ly-alpha emission line within a narrowband filter. Here, we present a 3 square degree search (similar to 1000 pMpc(2)) for LAEs around the z = 6.9 quasar VIK J2348-3054 using the Dark Energy CAMera (DECam) housed on the 4m Blanco telescope, finding 38 LAEs. The systemic redshift of VIK J2348-3054 is known from ALMA [CII] observations and places the Ly-alpha emission line of companions within the NB964 narrowband of DECam. This is the largest field-of-view LAE search around a z > 6 quasar conducted to date. We find that this field is similar to ten times more overdense than Chandra Deep-Field South, observed previously with the same instrumental setup as well as several combined blank fields. This is strong evidence that VIK J2348-3054 resides in an overdensity of LAEs over several Mpc. Surprisingly, we find a lack of LAEs within 5 physical Mpc of the quasar and take this to most likely be evidence of quasar-suppressing star formation in its immediate vicinity. This result highlights the importance of performing overdensity searches over large areas to properly assess the density of those regions of the Universe.
  • No Thumbnail Available
    Item
    A ∼15 kpc outflow cone piercing through the halo of the blue compact metal-poor galaxy SBS 0335-052E
    (2023) Herenz, E. C.; Inoue, J.; Salas, H.; Koenigs, B.; Moya-Sierralta, C.; Cannon, J. M.; Hayes, M.; Papaderos, P.; Oestlin, G.; Bik, A.; Le Reste, A.; Kusakabe, H.; Monreal-Ibero, A.; Puschnig, J.
    Context. Outflows from low-mass star-forming galaxies are a fundamental ingredient for models of galaxy evolution and cosmology. Despite seemingly favourable conditions for outflow formation in compact starbursting galaxies, convincing observational evidence for kiloparsec-scale outflows in such systems is scarce. Aims. The onset of kiloparsec-scale ionised filaments in the halo of the metal-poor compact dwarf SBS 0335-052E was previously not linked to an outflow. In this paper we investigate whether these filaments provide evidence for an outflow. Methods. We obtained new VLT/MUSE WFM and deep NRAO/VLA B-configuration 21 cm data of the galaxy. The MUSE data provide morphology, kinematics, and emission line ratios of H beta/H alpha and [O III]lambda 5007/H alpha of the low surface-brightness filaments, while the VLA data deliver morphology and kinematics of the neutral gas in and around the system. Both datasets are used in concert for comparisons between the ionised and the neutral phase. Results. We report the prolongation of a lacy filamentary ionised structure up to a projected distance of 16 kpc at SBH alpha = 1.5 x 10(-18) erg s cm(-2) arcsec(-2). The filaments exhibit unusual low H alpha/H beta approximate to 2.4 and low [O III]/H alpha similar to 0.4 - 0.6 typical of diffuse ionised gas. They are spectrally narrow (similar to 20 km s(-1)) and exhibit no velocity sub-structure. The filaments extend outwards from the elongated H I halo. On small scales, the N-HI peak is offset from the main star-forming sites. The morphology and kinematics of H I and H II reveal how star-formation-driven feedback interacts differently with the ionised and the neutral phase. Conclusions. We reason that the filaments are a large-scale manifestation of star-formation- driven feedback, namely limb-brightened edges of a giant outflow cone that protrudes through the halo of this gas-rich system. A simple toy model of such a conical structure is found to be commensurable with the observations.
  • No Thumbnail Available
    Item
    Physical properties of Centaur (60558) 174P/Echeclus from stellar occultations
    (2024) Pereira, C. L.; Braga-Ribas, F.; Sicardy, B.; Gomes-Junior, A. R.; Ortiz, J. L.; Branco, H. C.; Camargo, J. I. B.; Morgado, B. E.; Vieira-Martins, R.; Assafin, M.; Benedetti-Rossi, G.; Desmars, J.; Emilio, M.; Morales, R.; Rommel, F. L.; Hayamizu, T.; Gondou, T.; Jehin, E.; Artola, R. A.; Asai, A.; Colazo, C.; Ducrot, E.; Duffard, R.; Fabrega, J.; Fernandez-Valenzuela, E.; Gillon, M.; Horaguchi, T.; Ida, M.; Kitazaki, K.; Mammana, L. A.; Maury, A.; Melita, M.; Morales, N.; Moya-Sierralta, C.; Owada, M.; Pollock, J.; Sanchez, J. L.; Santos-Sanz, P.; Sasanuma, N.; Sebastian, D.; Triaud, A.; Uchiyama, S.; Vanzi, L.; Watanabe, H.; Yamamura, H.
    The Centaur (60558) Echeclus was discovered on 2000 March 03, orbiting between the orbits of Jupiter and Uranus. After exhibiting frequent outbursts, it also received a comet designation, 174P. If the ejected material can be a source of debris to form additional structures, studying the surroundings of an active body like Echeclus can provide clues about the formation scenarios of rings, jets, or dusty shells around small bodies. Stellar occultation is a handy technique for this kind of investigation, as it can, from Earth-based observations, detect small structures with low opacity around these objects. Stellar occultation by Echeclus was predicted and observed in 2019, 2020, and 2021. We obtain upper detection limits of rings with widths larger than 0.5km and optical depth of tau = 0.02. These values are smaller than those of Chariklo's main ring; in other words, a Chariklo-like ring would have been detected. The occultation observed in 2020 provided two positive chords used to derive the triaxial dimensions of Echeclus based on a 3D model and pole orientation available in the literature. We obtained a = 37.0 +/- 0.6km, b = 28.4 +/- 0.5km, and c = 24.9 +/- 0.4km, resulting in an area-equivalent radius of 30.0 +/- 0.5km. Using the projected limb at the occultation epoch and the available absolute magnitude (), we calculate an albedo of p(v) = 0.050 +/- 0.003. Constraints on the object's density and internal friction are also proposed.
  • Loading...
    Thumbnail Image
    Item
    Telltale signs of metal recycling in the circumgalactic medium of a z 0.77 galaxy
    (2021) Tejos, N.; López, S.; Ledoux, C.; Fernández-Figueroa, A.; Rivas, N.; Sharon, K.; Johnston, E. J.; Florian, M. K.; D'Ago, G.; Katsianis, A.; Barrientos, F.; Berg, T.; Corro-Guerra, F.; Hamel, M.; Moya-Sierralta, C.; Poudel, S.; Rigby, J. R.; Solimano, M.
    We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy ('G1') at z approximate to 0.77. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy, we obtain partially resolved kinematics of Mg II in absorption and [O II] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus four positions in front of it. The transverse positions cover G1's minor and major axes at impact parameters of approximate to 10-30 and approximate to 60kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by Mg II) and the interstellar medium (traced by [O II]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The Mg II velocity dispersion (sigma approximate to 30-100 km s(-1), depending on position) is of the same order as the modelled galaxy rotational velocity (v(rot) approximate to 80 km s(-1)), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the z similar to 1 CGM.
  • No Thumbnail Available
    Item
    The ALMA-CRISTAL survey Discovery of a 15 kpc-long gas plume in a z=4.54 Lyman-α blob
    (2024) Solimano, M.; Gonzalez-Lopez, J.; Aravena, M.; Herrera-Camus, R.; De Looze, I.; Schreiber, N. M. Foerster; Spilker, J.; Tadaki, K.; Assef, R. J.; Barcos-Munoz, L.; Davies, R. L.; Diaz-Santos, T.; Ferrara, A.; Fisher, D. B.; Guaita, L.; Ikeda, R.; Johnston, E. J.; Lutz, D.; Mitsuhashi, I.; Moya-Sierralta, C.; Relano, M.; Naab, T.; Posses, A. C.; Telikova, K.; Uebler, H.; van der Giessen, S.; Veilleux, S.; Villanueva, V.
    Massive star-forming galaxies in the high-redshift universe host large reservoirs of cold gas in their circumgalactic medium (CGM). Traditionally, these reservoirs have been linked to diffuse H I Lyman-alpha (Ly alpha) emission extending beyond approximate to 10 kpc scales. In recent years, millimeter and submillimeter observations have started to identify even colder gas in the CGM through molecular and/or atomic tracers such as the [C II] 158 mu m transition. In this context, we studied the well-known J1000+0234 system at z = 4.54 that hosts a massive dusty star-forming galaxy (DSFG), a UV-bright companion, and a Ly alpha blob. We combined new ALMA [C II] line observations taken by the CRISTAL survey with data from previous programs targeting the J1000+0234 system, and achieved a deep view into a DSFG and its rich environment at a 0 ''. 2 = 1.3 kpc resolution. We identified an elongated [C II]-emitting structure with a projected size of 15 kpc stemming from the bright DSFG at the center of the field, with no clear counterpart at any other wavelength. The plume is oriented approximate to 40 degrees away from the minor axis of the DSFG, and shows significant spatial variation of its spectral parameters. In particular, the [C II] emission shifts from 180 km s(-1 )to 400 km s(-1) between the bottom and top of the plume, relative to the DSFG's systemic velocity. At the same time, the line width starts at 400 - 600 km s(-1) but narrows down to 190 km s(-1) at the top end of the plume. We discuss four possible scenarios to interpret the [C II] plume: a conical outflow, a cold accretion stream, ram pressure stripping, and gravitational interactions. While we cannot strongly rule out any of these with the available data, we disfavor the ram pressure stripping scenario due to the requirement of special hydrodynamic conditions.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback