Browsing by Author "Morrell, Nidia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA puzzle solved after two decades: SN 2002gh among the brightest of superluminous supernovae(2022) Cartier, Regis; Hamuy, Mario; Contreras, Carlos; Anderson, Joseph P.; Phillips, Mark M.; Morrell, Nidia; Stritzinger, Maximilian D.; Hueichapan, Emilio D.; Clocchiatti, Alejandro; Roth, Miguel; Thomas-Osip, Joanna; Gonzalez, Luis E.We present optical photometry and spectroscopy of the superluminous SN 2002gh from maximum light to +204 d, obtained as part of the Carnegie Type II Supernova (CATS) project. SN 2002gh is among the most luminous discovered supernovae ever, yet it remained unnoticed for nearly two decades. Using Dark Energy Camera archival images we identify the potential supernova (SN) host galaxy as a faint dwarf galaxy, presumably having low metallicity, and in an apparent merging process with other nearby dwarf galaxies. We show that SN 2002gh is among the brightest hydrogen-poor SLSNe with M-V = -22.40 +/- 0.02, with an estimated peak bolometric luminosity of 2.6 +/- 0.1 x 10(44) erg s(-1). We discount the decay of radioactive nickel as the main SN power mechanism, and assuming that the SN is powered by the spin-down of a magnetar we obtain two alternative solutions. The first case, is characterized by significant magnetar power leakage, and M-ej between 0.6 and 3.2 M-circle dot, P-spin = 3.2 ms, and B = 5 x 10(13) G. The second case does not require power leakage, resulting in a huge ejecta mass of about 30 M-circle dot, a fast spin period of P-spin similar to 1 ms, and B similar to 1.6 x 10(14) G. We estimate a zero-age main-sequence mass between 14 and 25 M-circle dot for the first case and of about 135 M-circle dot for the second case. The latter case would place the SN progenitor among the most massive stars observed to explode as an SN.
- ItemGround-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova(2024) Siebert, Matthew R.; Kwok, Lindsey A.; Johansson, Joel; Jha, Saurabh W.; Blondin, Stephane; Dessart, Luc; Foley, Ryan J.; Hillier, D. John; Larison, Conor; Pakmor, Ruediger; Temim, Tea; Andrews, Jennifer E.; Auchettl, Katie; Badenes, Carles; Barna, Barnabas; Bostroem, K. Azalee; Brenner Newman, Max J.; Brink, Thomas G.; Bustamante-Rosell, Maria Jose; Camacho-Neves, Yssavo; Clocchiatti, Alejandro; Coulter, David A.; Davis, Kyle W.; Deckers, Maxime; Dimitriadis, Georgios; Dong, Yize; Farah, Joseph; Filippenko, Alexei V.; Floers, Andreas; Fox, Ori D.; Garnavich, Peter; Gonzalez, Estefania Padilla; Graur, Or; Hambsch, Franz-Josef; Hosseinzadeh, Griffin; Howell, D. Andrew; Hughes, John P.; Kerzendorf, Wolfgang E.; Le Saux, Xavier K.; Maeda, Keiichi; Maguire, Kate; McCully, Curtis; Mihalenko, Cassidy; Newsome, Megan; O'Brien, John T.; Pearson, Jeniveve; Pellegrino, Craig; Pierel, Justin D. R.; Polin, Abigail; Rest, Armin; Rojas-Bravo, Cesar; Sand, David J.; Schwab, Michaela; Shahbandeh, Melissa; Shrestha, Manisha; Smith, Nathan; Strolger, Louis-Gregory; Szalai, Tamas; Taggart, Kirsty; Terreran, Giacomo; Terwel, Jacco H.; Tinyanont, Samaporn; Valenti, Stefano; Vinko, Jozsef; Wheeler, J. Craig; Yang, Yi; Zheng, Weikang; Ashall, Chris; DerKacy, James M.; Galbany, Lluis; Hoeflich, Peter; Hsiao, Eric; de Jaeger, Thomas; Lu, Jing; Maund, Justyn; Medler, Kyle; Morrell, Nidia; Shappee, Benjamin J.; Stritzinger, Maximilian; Suntzeff, Nicholas; Tucker, Michael; Wang, LifanNebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon-oxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (M B = -18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak B-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O i] lambda lambda 6300, 6364 (FWHM approximate to 2000 km s-1), strong, broad emission from [Ca ii] lambda lambda 7291, 7323 (FWHM approximate to 7300 km s-1), and a rapid Fe iii to Fe ii ionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T approximate to 500 K), combined with prominent [O i] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM.
- ItemSupernova 2010ev : a reddened high velocity gradient type Ia supernova(2016) Gutiérrez, Caudia P.; González Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena