Browsing by Author "Morales, Felipe"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCritical care echocardiography in prone position patients during COVID-19 pandemic: a feasibility study(2022) Ugalde, Diego; Nicolas Medel, Juan; Mercado, Pablo; Pairumani, Ronald; Eisen, Daniela; Petruska, Edward; Montoya, Jorge; Morales, Felipe; Araya, Carla; Daniel Valenzuela, EmilioPurpose Critical care echocardiography is a fundamental tool in the hemodynamic evaluation of critically ill patients and prone position ventilation might limit its application. We aim to evaluate the feasibility of transthoracic echocardiography to assess different measurements performed in prone vs supine position in patients during COVID-19 pandemic to answer our research question: What is the feasibility of classic echocardiographic measurements in COVID-19 patients in prone position ventilation? Methods Patients with covid-19 admitted to ICUs in four academic hospitals with respiratory failure and on mechanical ventilation were evaluated with critical care echocardiography. The first ultrasound assessment was compared between prone and supine patients recording feasibility of several echocardiographic measurements, using Fisher's exact test complementing with Crombach's Alpha. Results 139 patients were included. Sixty-eight (49%) were evaluated in prone position and seventy one (51%) in supine position. Most variables were highly feasible, left ventricular volumes and ejection fraction were more possible to obtain in prone position, while cardiac output was in supine position. Tricuspid regurgitation was the least feasible overall measurement. Conclusion Prone position ultrasound achieved a high feasibility of measurements compared with supine ultrasound in critically ill patients with COVID-19 respiratory failure and on mechanical ventilation. Registration Post hoc analysis of Echo-COVID study (NTC04628195, registered November 13, 2020, retrospectively registered).
- ItemProgression of regional lung strain and heterogeneity in lung injury: assessing the evolution under spontaneous breathing and mechanical ventilation(2020) Hurtado Sepúlveda, Daniel; Sarabia Vallejos, Mauricio; Iturrieta, Pablo; Erranz, Benjamín; Lillo, Felipe; Morales, Felipe; Blaha, Katherine; Medina, Tania; Diaz, Franco; Cruces, PabloAbstract Background Protective mechanical ventilation (MV) aims at limiting global lung deformation and has been associated with better clinical outcomes in acute respiratory distress syndrome (ARDS) patients. In ARDS lungs without MV support, the mechanisms and evolution of lung tissue deformation remain understudied. In this work, we quantify the progression and heterogeneity of regional strain in injured lungs under spontaneous breathing and under MV. Methods Lung injury was induced by lung lavage in murine subjects, followed by 3 h of spontaneous breathing (SB-group) or 3 h of low Vt mechanical ventilation (MV-group). Micro-CT images were acquired in all subjects at the beginning and at the end of the ventilation stage following induction of lung injury. Regional strain, strain progression and strain heterogeneity were computed from image-based biomechanical analysis. Three-dimensional regional strain maps were constructed, from which a region-of-interest (ROI) analysis was performed for the regional strain, the strain progression, and the strain heterogeneity. Results After 3 h of ventilation, regional strain levels were significantly higher in 43.7% of the ROIs in the SB-group. Significant increase in regional strain was found in 1.2% of the ROIs in the MV-group. Progression of regional strain was found in 100% of the ROIs in the SB-group, whereas the MV-group displayed strain progression in 1.2% of the ROIs. Progression in regional strain heterogeneity was found in 23.4% of the ROIs in the SB-group, while the MV-group resulted in 4.7% of the ROIs showing significant changes. Deformation progression is concurrent with an increase of non-aerated compartment in SB-group (from 13.3% ± 1.6% to 37.5% ± 3.1%), being higher in ventral regions of the lung. Conclusions Spontaneous breathing in lung injury promotes regional strain and strain heterogeneity progression. In contrast, low Vt MV prevents regional strain and heterogeneity progression in injured lungs.
- ItemRisk Factors for Adult Depression: Adverse Childhood Experiences and Personality Functioning(2020) Dagnino, Paula; Jose Ugarte, Maria; Morales, Felipe; Gonzalez, Sofia; Saralegui, Daniela; Ehrenthal, Johannes C.Background: Depressive disorder is one of the main health problems worldwide. Many risk factors have been associated with this pathology. However, while the association between risks factors and adult depression is well established, the mechanisms behind its impact remains poorly understood. A possible, yet untested explanation is the mediating impact of levels of personality functioning, i.e., impairments with regard to self and interpersonal.