• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Monteiro, Joao V. D."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Polya Tree Sampler: Toward Efficient and Automatic Independent Metropolis-Hastings Proposals
    (AMER STATISTICAL ASSOC, 2011) Hanson, Timothy E.; Monteiro, Joao V. D.; Jara, Alejandro
    We present a simple, efficient, and computationally cheap sampling method for exploring an unnormalized multivariate density on R-d, such as a posterior density, called the Polya tree sampler. The algorithm constructs an independent proposal based on an approximation of the target density. The approximation is built from a set of (initial) support points data that act as parameters for the approximation and the predictive density of a finite multivariate Polya tree. In an initial "warming-up" phase, the support points are iteratively relocated to regions of higher support under the target distribution to minimize the distance between the target distribution and the Polya tree predictive distribution. In the "sampling" phase, samples from the final approximating mixture of finite Polya trees are used as candidates which are accepted with a standard Metropolis Hastings acceptance probability. Several illustrations are presented, including comparisons of the proposed approach to Metropolis-within-Gibbs and delayed rejection adaptive Metropolis algorithm. This article has supplementary material online.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback