Browsing by Author "Monet, DG"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemProper motions of dwarf spheroidal galaxies from Hubble Space Telescope imaging.: I.: Method and a preliminary measurement for Fornax(2002) Piatek, S; Pryor, C; Olszewski, EW; Harris, HC; Mateo, M; Minniti, D; Monet, DG; Morrison, H; Tinney, CGThis article presents and discusses a method for measuring the proper motions of the Galactic dwarf spheroidal galaxies using images taken with the Hubble Space Telescope. The method involves fitting an effective point-spread function to the image of a star or quasi-stellar object to determine its centroid with an accuracy of about 0.005 pixels (0.25 mas)-an accuracy sufficient to measure the proper motion of a dwarf spheroidal galaxy, using images separated by just a few years. The data consist of images, dithered to reduce the effects of undersampling, taken at multiple epochs with the Space Telescope Imaging Spectrograph or the Wide Field Planetary Camera. The science fields are in the directions of the Carina, Fornax, Sculptor, and Ursa Minor dwarf spheroidal galaxies, and each has at least one quasi-stellar object whose identity has been established by other studies. The rate of change with time of the centroids of the stars of the dwarf spheroidal with respect to the centroid of the quasi-stellar object is the proper motion. Four independent preliminary measurements of the proper motion of Fornax for three fields agree within their uncertainties. The weighted average of these measurements is mu(alpha) = 49 +/- 13 mas century(-1) and mu(delta) = -59 +/- 13 mas century(-1). The Galactocentric velocity derived from the proper motion implies that Fornax is near perigalacticon, may not be bound to the Milky Way, and is not a member of any of the proposed streams of galaxies and globular clusters in the Galactic halo. If Fornax is bound, the Milky Way must have a mass of at least (1.6 +/- 0.8) x 10(12) M.
- ItemSloan Digital Sky Survey(2002) Stoughton, C; Lupton, RH; Bernardi, M; Blanton, MR; Burles, S; Castander, FJ; Connolly, AJ; Eisenstein, DJ; Frieman, JA; Hennessy, GS; Hindsley, RB; Ivezic, Z; Kent, S; Kunszt, PZ; Lee, BC; Meiksin, A; Munn, JA; Newberg, HJ; Nichol, RC; Nicinski, T; Pier, JR; Richards, GT; Richmond, MW; Schlegel, DJ; Smith, JA; Strauss, MA; SubbaRao, M; Szalay, AS; Thakar, AR; Tucker, DL; Vanden Berk, DE; Yanny, B; Adelman, JK; Anderson, JE; Anderson, SF; Annis, J; Bahcall, NA; Bakken, JA; Bartelmann, M; Bastian, S; Bauer, A; Berman, E; Böhringer, H; Boroski, WN; Bracker, S; Briegel, C; Briggs, JW; Brinkmann, J; Brunner, R; Carey, L; Carr, MA; Chen, B; Christian, D; Colestock, PL; Crocker, JH; Csabai, IN; Czarapata, PC; Dalcanton, J; Davidsen, AF; Davis, JE; Dehnen, W; Dodelson, S; Doi, M; Dombeck, T; Donahue, M; Ellman, N; Elms, BR; Evans, ML; Eyer, L; Fan, XH; Federwitz, GR; Friedman, S; Fukugita, M; Gal, R; Gillespie, B; Glazebrook, K; Gray, J; Grebel, EK; Greenawalt, B; Greene, G; Gunn, JE; de Haas, E; Haiman, Z; Haldeman, M; Hall, PB; Hamabe, M; Hansen, B; Harris, FH; Harris, H; Harvanek, M; Hawley, SL; Hayes, JJE; Heckman, TM; Helmi, A; Henden, A; Hogan, CJ; Hogg, DW; Holmgren, DJ; Holtzman, J; Huang, CH; Hull, C; Ichikawa, SI; Ichikawa, T; Johnston, DE; Kauffmann, G; Kim, RSJ; Kimball, T; Kinney, E; Klaene, M; Kleinman, SJ; Klypin, A; Knapp, GR; Korienek, J; Krolik, J; Kron, RG; Krzesinski, J; Lamb, DQ; Leger, RF; Limmongkol, S; Lindenmeyer, C; Long, DC; Loomis, C; Loveday, J; MacKinnon, B; Mannery, EJ; Mantsch, PM; Margon, B; McG'hee, P; Mckay, TA; McLean, B; Menou, K; Merelli, A; Mo, HJ; Monet, DG; Nakamura, O; Narayanan, VK; Nash, T; Neilsen, EH; Newman, PR; Nitta, A; Odenkirchen, M; Okada, N; Okamura, S; Ostriker, JP; Owen, R; Pauls, AG; Peoples, J; Peterson, RS; Petravick, D; Pope, A; Pordes, R; Postman, M; Prosapio, A; Quinn, TR; Rechenmacher, R; Rivetta, CH; Rix, HW; Rockosi, CM; Rosner, R; Ruthmansdorfer, K; Sandford, D; Schneider, DP; Scranton, R; Sekiguchi, M; Sergey, G; Sheth, R; Shimasaku, K; Smee, S; Snedden, SA; Stebbins, A; Stubbs, C; Szapudi, I; Szkody, P; Szokoly, GP; Tabachnik, S; Tsvetanov, Z; Uomoto, A; Vogeley, MS; Voges, W; Waddell, P; Walterbos, R; Wang, SI; Watanabe, M; Weinberg, DH; White, RL; White, SDM; Wilhite, B; Wolfe, D; Yasuda, N; York, DG; Zehavi, I; Zheng, WThe Sloan Digital Sky Survey (SDSS) is an imaging and spectroscopic survey that will eventually cover approximately one-quarter of the celestial sphere and collect spectra of 10 6 galaxies, 100,000 quasars, 30,000 stars, and 30,000 serendipity targets. In 2001 June, the SDSS released to the general astronomical community its early data release, roughly 462 deg(2) of imaging data including almost 14 million detected objects and 54,008 follow-up spectra. The imaging data were collected in drift-scan mode in five bandpasses (u, g, r, i, and z); our 95% completeness limits for stars are 22.0, 22.2, 22.2, 21.3, and 20.5, respectively. The photometric calibration is reproducible to 5%, 3%, 3%, 3%, and 5%, respectively. The spectra are flux- and wavelength-calibrated, with 4096 pixels from 3800 to 9200 Angstrom at R approximate to 1800. We present the means by which these data are distributed to the astronomical community, descriptions of the hardware used to obtain the data, the software used for processing the data, the measured quantities for each observed object, and an overview of the properties of this data set.