• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Molina Catricheo, Constanza Andrea"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modeling global surface dust deposition using physics-informed neural networks
    (2023) Molina Catricheo, Constanza Andrea; Wout, Elwin van't; Pontificia Universidad Católica de Chile. Escuela de Ingeniería
    Las redes neuronales informadas por física (PINNs, por sus siglas en inglés) se han vuelto cada vez mas populares, especialmente para resolver ecuaciones diferenciales parciales (EDPs). Las PINNs pueden incorporar información física sobre el proceso en la arquitectura de la red neuronal, reduciendo el espacio de solución y convirtiéndolas en una alternativa cuando hay datos limitados, dispersos e irregulares disponibles. El objetivo de esta tesis es construir y evaluar el rendimiento de una red neuronal informada por física para medir los flujos de polvo durante los periodos del Último Máximo Glacial y Holoceno. Esta metodología combina el análisis de datos con principios físicos para mejorar la precisión de la predicción. Los resultados muestran que las PINNs son una alternativa prometedora a los métodos estadísticos como Kriging cuando hay información limitada disponible. En este estudio se incorporó la modelización física de la deposición de polvo y las PINNs predijeron con precisión los flujos realistas de polvo a lo largo de las direcciones de viento dominantes. Los resultados de este estudio son prometedores, mostrando que las PINNs pueden ser utilizadas como una alternativa efectiva cuando hay datos limitados e irregulares disponibles.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback