Browsing by Author "Moenne, A"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAntioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments(2005) Contreras, L; Moenne, A; Correa, JAScytosiphon lomentaria (Lingb.) Link. (Phaeophyceae) is one of the two dominant seaweeds in a coastal area of northern Chile affected by copper mine wastes, where the concentration of copper in water and algal tissues remains higher than in nonimpacted sites. Copper-loaded plants develop oxidative stress, as demonstrated by the increased levels of reactive oxygen species and lipoperoxides. This stress was associated with 1) an enhanced activity of the antioxidant enzymes catalase, glutathione peroxidase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase and 2) an inhibition of the glutathione reductase activity. Furthermore, stressed plants showed a decrease in glutathione and phenolic compounds levels and an increase in total ascorbate. Reciprocal transplants revealed that plants rapidly adjusted their antioxidant system in response to the conditions of the receiving site. In individuals transplanted from the copper-enriched environment to the control site, normal levels of lipoperoxides and antioxidant compounds were restored in 48 h and antioxidant enzymes recovered their basal activities in 96 h. Individuals transplanted from the control site to the copper-enriched area adjusted their antioxidant compounds and antioxidant enzymes within 48 h and 96 h, respectively, and reached the functional status of the local plants. We conclude that S. lomentaria inhabiting the copper-enriched area buffered oxidative stress by a simultaneous involvement of antioxidant enzymes and water-soluble antioxidant compounds. These antioxidant responses were rapid and reversible, suggesting that copper resistance in S. lomentaria is a constitutive trait and that copper enrichment of the area did not result in a locally adapted copper-tolerant ecotype.
- ItemEditing status of mat-r transcripts in mitochondria from two plant species(1998) Bégu, D; Mercado, A; Farré, JC; Moenne, A; Holuigue, L; Araya, A; Jordana, XThe intronic mat-r ORF encodes a protein with significant homology to retroviral reverse transcriptases. Here, we describe the nucleotide sequence of potato mat-r and study the editing status of mat-r transcripts in two systems, potato and wheat, where the mat-r ORF is part of the trans-introns but in two different configurations relative to nadl exons d and e. In potato and wheat, 13 and 15 C-to-U transitions respectively were observed. Most transcripts were partially edited, but potato transcripts were edited more efficiently than wheat transcripts. As in functional mitochondrial genes, RNA editing increased the similarity between plant mat-r proteins and their homologous non-plant counterparts. Interestingly, editing of mat-r was clustered in the reverse-transcriptase (RT) and the maturase (X) domains, two well defined regions having known functions in other systems. These results, together with the integrity and sequence conservation of mat-r, strongly suggest that the encoded protein plays a functional role in plant mitochondria.
- ItemThe rpl5-rps14-cob gene arrangement in Solanum tuberosum: rps14 is a transcribed and unedited pseudogene(1996) Quinones, V; Zanlungo, S; Moenne, A; Gomez, I; Holuigue, L; Litvak, S; Jordana, XThe L5 ribosomal protein gene (rpl5) and a S14 ribosomal protein pseudogene were identified by sequence analysis in the potato mitochondrial genome. The two genes are separated by one nucleotide and are found upstream of the apocytochrome b gene (cob), an arrangement conserved also in Arabidopsis and Brassica. The rpl5 gene has an intact open reading frame while the rps14 locus is disrupted by a five nucleotide duplication that introduces a frameshift in the reading frame. Editing of rpl5 and pseudorps14 cotranscripts has been studied by cDNA sequence analysis. Eight C residues are edited into U in the rpl5 coding region, resulting in eight amino acid changes that increase the homology between potato and other RPL5 polypeptides. Interestingly, the rps14 pseudogene sequence is not edited at any nucleotide position.
