Browsing by Author "Mitchell, I."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemA high precision calibration of the nonlinear energy response at Daya Bay(2019) Adey, D.; An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Ochoa-Ricoux, Juan Pedro; Chang, J. F.; Chang, Y.; Chen, H. S.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; Dash, N.; Deng, F. S.; Ding, Y. Y.; Diwan, M. V.; Dohnal, T.; Dove, J.; Dvorak, M.; Dwyer, D. A.; Gonchar, M.; Gong, G. H.; Gong, H.; Gu, W. Q.; Guo, J . Y.; Guo, L.; Guo, X. H.; Guo, Y. H.; Guo, Z.; Hackenburg, R. W.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, J. R.; Hu, T.; Hu, Z. J.; Huang, H. X.; Huang, X. T.; Huang, Y. B.; Huber, P.; Jaffe, D. E.; Jen, K. L.; Jetter, S.; Ji, X. L.; Ji, X. P.; Johnson, R. A.; Jones, D.; Kang, L.; Kettell, S. H.; Koerner, L. W.; Kohn, S.; Kramer, M.; Langford, T. J.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, F.; Li, H. L.; Li, Q. J.; Li, S.; Li, S. C.; Li, S. J.; Li, W. D.; Li, X. N.; Li, X. Q.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, J. C.; Liu, J. L.; Liu, Y.; Liu, Y. H.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Marshall, C.; Caicedo, D. A. M.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Lepin, L. M.; Napolitano, J.; Naumov, D.; Naumova, E.; Olshevskiy, A.; Pan, H. R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, J. L.; Treskov, K.; Tse, W. H.; Tull, C. E.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, J.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wei, L. H.; Wen, L. J.; Whisnant, K.; White, C. G.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xing, Z. Z.; Xu, J. L.; Xue, T.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, Y. Z.; Ye, M.; Yeh, M.; Young, B. L.; Yu, HZ.; Yu, Z. Y.; Yue, B. B.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, C. C.; Zhang, F. Y.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, R.; Zhang, X. F.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. Y.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhou, L.; Zhuang, H. L.; Zou, J. H.
- ItemFormation of hexagonal silicon carbide by high energy ion beam irradiation on Si(100) substrate(2007) Bhuyan, H.; Favre, M.; Valderrama, E.; Avaria, G.; Chuaqui, H.; Mitchell, I.; Wyndham, E.; Saavedra, R.; Paulraj, M.We report the investigation of high energy ion beam irradiation on Si (100) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The unexposed and ion exposed substrates were characterized by x-ray diffraction, scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive x-ray analysis and atomic force microscopy (AFM) and the results are reported. The interaction of the pulsed PF ion beams, with characteristic energy in the 60-450 keV range, with the Si surface, results in the formation of a surface layer of hexagonal silicon carbide. The SEM and AFM analyses indicate clear step bunching on the silicon carbide surface with an average step height of 50 nm and a terrace width of 800 nm.
- ItemRefractive optical measurements on the Llampüdkeñ generator(2006) Suzuki, F.; Veloso Espinosa, Felipe; Molina, F.; Mitchell, I.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Wyndham, E.
- ItemSpace and time resolved observations of plasma dynamics in a compressional gas embedded Z-pinch(IET, 1996) Soto, L.; Chuaqui, Hernán; Favre Domínguez, Mario Benjamin; Saavedra Sanchez, Renato Alejandro; Wyndham Hodder, Edmund Sydenham; Aliaga-Rossel, R.; Mitchell, I.Recent experiments in a gas embedded compressional Z-pinch are presented. The experiments have been carried out in H2 at 1/3 atm, using a pulse power generator capable of delivering a dI/dt > 1012 A/s. The pinch is initiated by a focused laser pulse, which is coaxial with a cylindrical DC rnicrodischarge. This configuration results in double column pinch at early times, which at current rise evolves into a gas embedded compressional Z-pinch. Diagnostics used are Rogowskii coil, single frame holographic interferometry and holographic shadowgraphy, visible streak camera images from which, current, density, line density, pinch radius and plasma motion are obtained. The pinch is characterized by a maximum on axis density which is much higher than the expected value from filling pressure, with a Bennett temperature of 40 eV at 130 kA‥ Results shown confirm the high degree of compression achievable with the composite preionization scheme.