Browsing by Author "Maureira-Carsalade, Nelson"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAnalyzing Influence of Mix Design Constituents on Compressive Strength, Setting Times, and Workability of Geopolymer Mortar and Paste(2023) Oyejobi, Damilola; Jameel, Mohammed; Adewuyi, Adekunle; Aina, Samuel; Avudaiappan, Siva; Maureira-Carsalade, NelsonGeopolymer concrete and mortar have evolved over the years as potential alternatives for reducing the greenhouse gases associated with cement production. This current research was aimed at investigating the optimum dosage and concentration of sodium hydroxide required to leach out silica and alumina oxides in the fly ash for geopolymerization to take place. Blackish grey fly ash from Morupule, Botswana, was synthesized by varying sodium hydroxide (NaOH) of 98% purity between 8 M and 14 M, respectively. The ratio influence of sodium hydroxide to fly ash in dissolving the oxides was carried out at the values of 0.55, 0.62, and 0.75. The results showed that the workability of the geopolymer mortar and paste decreased with the increase in the ratio of fly ash to alkaline activator. The highest workability was achieved at a ratio of 0.75 : 1. The compressive strength, setting time, and workability of geopolymer mortar and paste can be controlled by adjusting the ratio of fly ash to alkaline activator. A ratio of 1.5 : 1 was found to be the most suitable for achieving high compressive strength, while a ratio of 0.75 : 1 was found to be the most suitable for achieving high workability. Furthermore, the workability values were in the range of 105 to 143 mm, while the ranges of initial and final setting times were found to be between 280-350 and 950-1170 minutes, respectively. This study is significant because no previous study has carried out geopolmerization of the Morupule fly ash as a result of its unique characteristics. These findings have important implications for the development of sustainable construction materials. The main finding was that for optimum reaction to take place, and NaOH/fly ash ratio should be kept at 0.55 and molarity of 12 to avoid leaching of other oxides that might weaken the strength.
- ItemInnovative Use of Single-Use Face Mask Fibers for the Production of a Sustainable Cement Mortar(2023) Avudaiappan, Siva; Cendoya, Patricio; Arunachalam, Krishna Prakash; Maureira-Carsalade, Nelson; Canales, Cristian; Amran, Mugahed; Parra, Pablo F.Due to the COVID-19 epidemic, biomedical waste management has overwhelmed both developed and developing nations. It is now a critical issue that has to be addressed with minimal possible adverse impact on the environment. This study introduced a technique of recycling face masks into polypropylene fibers for use in concrete. This proposed recycling process provides complete disinfection of contaminated clinical waste and offers the opportunity to transform the characteristics of an end product. Microfibers manufactured from recycled medical masks were subjected to testing. According to the results, polypropylene is the primary component of this research program. Two batches of concrete were made, one with the inclusion of masks as polypropylene fibers and another that performed as a control mix. The modified mortar was compared to the control mix in split tensile, flexure, compressive strength, and water absorption. Compressive strength was found to be improved by about 17%, and tensile strength to be increased by around 22% when mask fibers were incorporated. This research introduced a novel approach for disposing of waste masks and established the preliminary viability of upcycling trash face masks towards mortar concrete production.
- ItemNon-Destructive Assessment of the Elastic Properties of Low-Grade CLT Panels(2021) Opazo-Vega, Alexander; Benedetti, Franco; Nunez-Decap, Mario; Maureira-Carsalade, Nelson; Oyarzo-Vera, ClaudioThe use of cross-laminated timber panels (CLT) made of low-grade structural timber has steadily increased in developing countries. These panels usually present several natural defects, which can cause a high local variation of their orthotropic elastic properties, generating future structural serviceability problems. Our work aims to estimate the local variability of the elastic properties in low-grade CLT panels by combining nondestructive transverse vibration testing, numerical simulations, and regional sensitivity analysis (RSA). Four three-layer Radiata pine CLT panels were subjected to transverse vibration tests with supports at four points. Besides, a series of numerical simulations of the panels, considering the local variability of the elastic properties of the panels in eight zones, were carried out using the finite element method. Then, RSA analysis was performed to study in which ranges of values the panels' elastic properties generated lower differences between the measured versus simulated dynamic properties. Finally, a structural quality control indicator was proposed for the CLT panels based on keeping low the probability that the elastic properties in the central zones do not exceed minimum acceptable values. The results obtained suggest that the proposed methodology is suitable for segregating CLT panels with high concentrations of defects such as pith presence.