Browsing by Author "Marriage, Tobias A."
Now showing 1 - 15 of 15
Results Per Page
Sort Options
- ItemA measurement of the millimetre emission and the Sunyaev-Zel'dovich effect associated with low-frequency radio sources(2014) Gralla, Megan B.; Crichton, Devin; Marriage, Tobias A.; Mo, Wenli; Aguirre Aparicio, Paula; Addison, Graeme E.; Asboth, V.; Battaglia, Nick; Dünner Planella, Rolando; Morales Morales, Gustavo
- ItemCLASS Angular Power Spectra and Map-component Analysis for 40 GHz Observations through 2022(2024) Eimer, Joseph R.; Li, Yuyang; Brewer, Michael K.; Shi, Rui; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Bruno, Sarah Marie; Bustos, Ricardo; Chuss, David T.; Cleary, Joseph; Dahal, Sumit; Datta, Rahul; Denes Couto, Jullianna; Denis, Kevin L.; Dunner, Rolando; Essinger-Hileman, Thomas; Fluxa, Pedro; Hubmayer, Johannes; Harrington, Kathleen; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias A.; Nunez, Carolina; Parker, Lucas; Petroff, Matthew A.; Reeves, Rodrigo A.; Rostem, Karwan; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, Zhilei; Zeng, LingzhenMeasurement of the largest angular scale (l < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordial B-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 < l < 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125(130)mu Karcmin . We measure the Galaxy-masked EE and BB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 < l < 125 with the first bin showing D- l < 0.023 mu K-CMB(2) at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis.
- ItemCLASS Data Pipeline and Maps for 40 GHz Observations through 2022(2023) Li, Yunyang; Eimer, Joseph R.; Osumi, Keisuke; Appel, John W.; Brewer, Michael K.; Ali, Aamir; Bennett, Charles L.; Bruno, Sarah Marie; Bustos, Ricardo; Chuss, David T.; Cleary, Joseph; Couto, Jullianna Denes; Dahal, Sumit; Datta, Rahul; Denis, Kevin L.; Dunner, Rolando; Espinoza, Francisco; Essinger-Hileman, Thomas; Rojas, Pedro Fluxa; Harrington, Kathleen; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias A.; Miller, Nathan J.; Novack, Sasha; Nunez, Carolina; Petroff, Matthew A.; Reeves, Rodrigo A.; Rostem, Karwan; Shi, Rui; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, Zhilei; Zeng, Lingzhen; CLASS CollaborationThe Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background over 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. This paper describes the CLASS data pipeline and maps for 40 GHz observations conducted from 2016 August to 2022 May. We demonstrate how well the CLASS survey strategy, with rapid (similar to 10 Hz) front-end modulation, recovers the large-scale Galactic polarization signal from the ground: the mapping transfer function recovers similar to 67% (85%) of EE and BB (VV) power at l = 20 and similar to 35% (47%) at l = 10. We present linear and circular polarization maps over 75% of the sky. Simulations based on the data imply the maps have a white noise level of 110 mu Karcmin and correlated noise component rising at low-l as l -2.4. The transfer-function-corrected low-l component is comparable to the white noise at the angular knee frequencies of l approximate to 18 (linear polarization) and l approximate to 12 (circular polarization). Finally, we present simulations of the level at which expected sources of systematic error bias the measurements, finding subpercent bias for the Lambda cold dark matter EE power spectra. Bias from E-to-B leakage due to the data reduction pipeline and polarization angle uncertainty approaches the expected level for an r = 0.01 BB power spectrum. Improvements to the instrument calibration and the data pipeline will decrease this bias.
- ItemCLASS Observations of Atmospheric Cloud Polarization at millimeter Wavelengths(2023) Li, Yunyang; Appel, John W.; Bennett, Charles L.; Bustos, Ricardo; Chuss, David T.; Cleary, Joseph; Couto, Jullianna Denes; Dahal, Sumit; Datta, Rahul; Duenner, Rolando; Eimer, Joseph R.; Essinger-Hileman, Thomas; Harrington, Kathleen; Iuliano, Jeffrey; Marriage, Tobias A.; Petroff, Matthew A.; Reeves, Rodrigo A.; Rostem, Karwan; Shi, Rui; Valle, Deniz A. N.; Watts, Duncan J.; Wolff, Oliver F.; Wollack, Edward J.; Xu, ZhileiThe dynamic atmosphere imposes challenges to ground-based cosmic microwave background observation, especially for measurements on large angular scales. The hydrometeors in the atmosphere, mostly in the form of clouds, scatter the ambient thermal radiation and are known to be the main linearly polarized source in the atmosphere. This scattering-induced polarization is significantly enhanced for ice clouds due to the alignment of ice crystals under gravity, which are also the most common clouds seen at the millimeter-astronomy sites at high altitudes. This work presents a multifrequency study of cloud polarization observed by the Cosmology Large Angular Scale Surveyor experiment on Cerro Toco in the Atacama Desert of northern Chile, from 2016-2022, at the frequency bands centered around 40, 90, 150, and 220 GHz. Using a machine-learning-assisted cloud classifier, we made connections between the transient polarized emission found in all four frequencies with the clouds imaged by monitoring cameras at the observing site. The polarization angles of the cloud events are found to be mostly 90 degrees from the local meridian, which is consistent with the presence of horizontally aligned ice crystals. The 90 and 150 GHz polarization data are consistent with a power law with a spectral index of 3.90 +/- 0.06, while an excess/deficit of polarization amplitude is found at 40/220 GHz compared with a Rayleigh scattering spectrum. These results are consistent with Rayleigh-scattering-dominated cloud polarization, with possible effects from supercooled water absorption and/or Mie scattering from a population of large cloud particles that contribute to the 220 GHz polarization.
- ItemCosmology Large Angular Scale Surveyor (CLASS): 90 GHz Telescope Pointing, Beam Profile, Window Function, and Polarization Performance(2024) Datta, Rahul; Brewer, Michael K.; Couto, Jullianna Denes; Eimer, Joseph; Li, Yunyang; Xu, Zhilei; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Bustos, Ricardo; Chuss, David T.; Cleary, Joseph; Dahal, Sumit; Inostroza, Francisco Raul Javier Espinoza; Essinger-Hileman, Thomas; Fluxa, Pedro; Harrington, Kathleen; Helson, Kyle; Iuliano, Jeffrey; Karakla, John; Marriage, Tobias A.; Novack, Sasha; Nunez, Carolina; Padilla, Ivan L.; Parker, Lucas; Petroff, Matthew A.; Reeves, Rodrigo; Rostem, Karwan; Shi, Rui; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Zeng, LingzhenThe Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array that observes the cosmic microwave background (CMB) over similar to 75% of the sky from the Atacama Desert, Chile, at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the large angular scale CMB polarization to constrain the tensor-to-scalar ratio and the optical depth to last scattering. This paper presents the optical characterization of the 90 GHz telescope. Observations of the Moon establish the pointing while dedicated observations of Jupiter are used for beam calibration. The standard deviations of the pointing error in azimuth, elevation, and boresight angle are 1.' 3, 2.' 1, and 2.' 0, respectively, over the first 3 yr of observations. This corresponds to a pointing uncertainty similar to 7% of the beam's full width at half-maximum (FWHM). The effective azimuthally symmetrized instrument 1D beam estimated at 90 GHz has an FWHM of 0.degrees 620 +/- 0.degrees 003 and a solid angle of 138.7 +/- 0.6(stats.) +/- 1.1(sys.) mu sr integrated to a radius of 4 degrees. The corresponding beam window function drops to b & ell;2=0.93,0.71,0.14 at & ell; = 30, 100, 300, respectively. Far-sidelobes are studied using detector-centered intensity maps of the Moon and measured to be at a level of 10-3 or below relative to the peak. The polarization angle of Tau A estimated from preliminary survey maps is 149 degrees.6 +/- 0 degrees.2(stats.) in equatorial coordinates. The instrumental temperature-to-polarization (T -> P) leakage fraction, inferred from per-detector demodulated Jupiter scan data, has a monopole component at the level of 1.7 x 10-3, a dipole component with an amplitude of 4.3 x 10-3, with no evidence of quadrupolar leakage.
- ItemFour-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: On-sky Receiver Performance at 40, 90, 150, and 220 GHz Frequency Bands(2022) Dahal, Sumit; Appel, John W.; Datta, Rahul; Brewer, Michael K.; Ali, Aamir; Bennett, Charles L.; Bustos, Ricardo; Chan, Manwei; Chuss, David T.; Cleary, Joseph; Couto, Jullianna D.; Denis, Kevin L.; Dunner, Rolando; Eimer, Joseph; Espinoza, Francisco; Essinger-Hileman, Thomas; Golec, Joseph E.; Harrington, Kathleen; Helson, Kyle; Iuliano, Jeffrey; Karakla, John; Li, Yunyang; Marriage, Tobias A.; McMahon, Jeffrey J.; Miller, Nathan J.; Novack, Sasha; Nunez, Carolina; Osumi, Keisuke; Padilla, Ivan L.; Palma, Gonzalo A.; Parker, Lucas; Petroff, Matthew A.; Reeves, Rodrigo; Rhoades, Gary; Rostem, Karwan; Valle, Deniz A. N.; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, ZhileiThe Cosmology Large Angular Scale Surveyor (CLASS) observes the polarized cosmic microwave background (CMB) over the angular scales of 1 degrees less than or similar to theta <= 90 degrees with the aim of characterizing primordial gravitational waves and cosmic reionization. We report on the on-sky performance of the CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic G-band (150/220 GHz) receivers that have been operational at the CLASS site in the Atacama desert since 2016 June, 2018 May, and 2019 September, respectively. We show that the noise-equivalent power measured by the detectors matches the expected noise model based on on-sky optical loading and lab-measured detector parameters. Using Moon, Venus, and Jupiter observations, we obtain power to antenna temperature calibrations and optical efficiencies for the telescopes. From the CMB survey data, we compute instantaneous array noise-equivalent-temperature sensitivities of 22, 19, 23, and 71 mu K-cmp root s for the 40, 90, 150, and 220 GHz frequency bands, respectively. These noise temperatures refer to white noise amplitudes, which contribute to sky maps at all angular scales. Future papers will assess additional noise sources impacting larger angular scales.
- ItemSubaru weak lensing measurement of a z=0.81 cluster discovered by the Atacama Cosmology Telescope Survey(2013) Miyatake, Hironao; Nishizawa, Atsushi J.; Takada, Masahiro; Mandelbaum, Rachel; Mineo, Sogo; Aihara, Hiroaki; Spergel, David N.; Bickerton, Steven J.; Bond, J. Richard; Gralla, Megan; Hajian, Amir; Hilton, Matt; Hincks, Adam D.; Hughes, John P.; Infante, Leopoldo; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Miyazaki, Satoshi; Moodley, Kavilan; Niemack, Michael D.; Oguri, Masamune; Price, Paul A.; Reese, Erik D.; Sifon, Cristobal; Wollack, Edward J.; Yasuda, NaokiWe present a Subaru weak lensing measurement of ACT-CL J0022.2-0036, one of the most luminous, high-redshift (z = 0.81) Sunyaev-Zel'dovich (SZ) clusters discovered in the 268 deg(2) equatorial region survey of the Atacama Cosmology Telescope that overlaps with Sloan Digital Sky Survey (SDSS) Stripe 82 field. Ours is the first weak lensing study with Subaru at such high redshifts. For the weak lensing analysis using i'-band images, we use a model-fitting (Gauss-Laguerre shapelet) method to measure shapes of galaxy images, where we fit galaxy images in different exposures simultaneously to obtain best-fitting ellipticities taking into account the different point spread functions (PSFs) in each exposure. We also take into account the astrometric distortion effect on galaxy images by performing the model fitting in the world coordinate system. To select background galaxies behind the cluster at z = 0.81, we use photometric redshift estimates for every galaxy derived from the co-added images of multi-passband Br'i'z'Y, with PSF matching/homogenization. After a photometric redshift cut for background galaxy selection, we detect the tangential weak lensing distortion signal with a total signal-to-noise ratio of about 3.7. By fitting a Navarro-Frenk-White model to the measured shear profile, we find the cluster mass to be M-200 (rho) over barm = [7.5(-2.8)(+3.2)(stat.)(+1.3)(-0.6)(sys.)] x 10(14) M-circle dot h(-1). The weak lensing-derived mass is consistent with previous mass estimates based on the SZ observation, with assumptions of hydrostatic equilibrium and virial theorem, as well as with scaling relations between SZ signal and mass derived from weak lensing, X-ray and velocity dispersion, within the measurement errors. We also show that the existence of ACT-CL J0022.2-0036 at z = 0.81 is consistent with the cluster abundance prediction of the Lambda-dominated cold dark matter structure formation model. We thus demonstrate the capability of Subaru-type ground-based images for studying weak lensing of high-redshift clusters.
- ItemThe Atacama Cosmology Telescope : dusty star-forming galaxies and active galactic nuclei in the Southern survey(2014) Marsden, Danica; Gralla, Megan; Marriage, Tobias A.; Switzer, Eric R.; Partridge, Bruce; Massardi, Marcella; Morales, Gustavo; Bond, J. Richard; Dünner Planella, Rolando
- ItemTHE ATACAMA COSMOLOGY TELESCOPE: CALIBRATION WITH THE WILKINSON MICROWAVE ANISOTROPY PROBE USING CROSS-CORRELATIONS(2011) Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Felipe Barrientos, L.; Battistelli, Elia S.; Bond, John R.; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W. Bertrand; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Halpern, Mark; Hasselfield, Matthew; Hernandez-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin M.; Hughes, David H.; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Baptiste Juin, Jean; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H.; Marriage, Tobias A.; Marsden, Danica; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wollack, Ed; Zhao, YueWe present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and map-making procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 < l < 1000, we determine the absolute calibration with an uncertainty of 2% in temperature. The precise measurement of the calibration error directly impacts the uncertainties in the cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.
- ItemThe Atacama Cosmology Telescope: CO(J=3-2) Mapping and Lens Modeling of an ACT-selected Dusty Star-forming Galaxy(2019) Rivera, Jesus; Baker, Andrew J.; Gallardo, Patricio A.; Gralla, Megan B.; Harris, Andrew, I; Huffenberger, Kevin M.; Hughes, John P.; Keeton, Charles R.; Lopez-Caraballo, Carlos H.; Marriage, Tobias A.; Partridge, Bruce; Sievers, Jonathan L.; Tagore, Amitpal S.; Walter, Fabian; Weiss, Axel; Wollack, Edward J.We report Northern Extended Millimeter Array CO(J = 3 - 2) observations of the dusty star-forming galaxy ACT-S J020941+001557 at z = 2.5528, which was detected as an unresolved source in the Atacama Cosmology Telescope (ACT) equatorial survey. Our spatially resolved spectral line data support the derivation of a gravitational lens model from 37 independent velocity channel maps using a pixel-based algorithm, from which we infer a velocity-dependent magnification factor mu approximate to 7-22 with a luminosity-weighted mean approximate to 13. The resulting source-plane reconstruction is consistent with a rotating disk, although other scenarios cannot be ruled out by our data. After correction for lensing, we derive a line luminosity LCO(3-2)' = (5.53 +/- 0.69) x 10(10) K km s(-1) pc(2), a cold gas mass M-gas = (3.86 +/- 0.33) x 10(10) M-circle dot, a dynamical mass M-dyn sin(2) i = 3.9(-1.5)(+1.8) x 10(10) M-circle dot, and a gas mass fraction f(gas) csc(2) i = 1.0(-0.4)(+0.8). The line brightness temperature ratio of r(3,1) approximate to 1.6 relative to a Green Bank Telescope CO(J = 1 - 0) detection may be elevated by a combination of external heating of molecular clouds, differential lensing, and/or pointing errors.
- ItemTHE ATACAMA COSMOLOGY TELESCOPE: DETECTION OF SUNYAEV-ZEL'DOVICH DECREMENT IN GROUPS AND CLUSTERS ASSOCIATED WITH LUMINOUS RED GALAXIES(2011) Hand, Nick; Appel, John W.; Battaglia, Nick; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D.; Hlozek, Renee; Hughes, John P.; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A.; Marsden, Danica; McLaren, Mike; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Plimpton, Reed; Reese, Erik D.; Rojas, Felipe; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jonathan L.; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Visnjic, Katerina; Wollack, EdWe present a detection of the Sunyaev-Zel'dovich (SZ) decrement associated with the luminous red galaxy (LRG) sample of the Sloan Digital Sky Survey. The SZ data come from 148 GHz maps of the equatorial region made by the Atacama Cosmology Telescope. The LRG sample is divided by luminosity into four bins, and estimates for the central SZ temperature decrement are calculated through a stacking process. We detect and account for a bias of the SZ signal due to weak radio sources. We use numerical simulations to relate the observed decrement to Y-200 and clustering properties to relate the galaxy luminosity to halo mass. We also use a relation between brightest cluster galaxy luminosity and cluster mass based on stacked gravitational lensing measurements to estimate the characteristic halo masses. The masses are found to be around 10(14) M-circle dot.
- ItemThe Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect(2010) Menanteau, Felipe; González, Jorge; Juin, Jean-Baptiste; Marriage, Tobias A.; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Deshpande, Amruta J.; Devlin, Mark J.; Dicker, Simon; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marsden, Danica; Moodley, Kavilan; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Sehgal, Neelima; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel; Switzer, Eric; Thornton, Robert; Trac, Hy; Warne, Ryan; Wollack, EdWe present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich effect (SZE) from 148 GHz maps over 455 deg(2) of sky made with the Atacama Cosmology Telescope (ACT). These maps, coupled with multi-band imaging on 4 m class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts, and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(14) M-circle dot, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(15) M-circle dot and the redshift range is 0.167-1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the universe.
- ItemThe Atacama Cosmology Telescope: Sunyaev-Zel'dovich-Selected Galaxy Clusters at 148 GHz in the 2008 Survey(2011) Marriage, Tobias A.; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Bertrand Doriese, W.; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.; Fowler, Joseph W.; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hernández-Monteagudo, Carlos; Hilton, Gene C.; Hilton, Matt; Hincks, Adam D.; Hlozek, Renée; Huffenberger, Kevin M.; Handel Hughes, David; Hughes, John P.; Infante, Leopoldo; Irwin, Kent D.; Baptiste Juin, Jean; Kaul, Madhuri; Klein, Jeff; Kosowsky, Arthur; Lau, Judy M.; Limon, Michele; Lin, Yen-Ting; Lupton, Robert H.; Marsden, Danica; Martocci, Krista; Mauskopf, Phil; Menanteau, Felipe; Moodley, Kavilan; Moseley, Harvey; Netterfield, Calvin B.; Niemack, Michael D.; Nolta, Michael R.; Page, Lyman A.; Parker, Lucas; Partridge, Bruce; Quintana, Hernan; Reese, Erik D.; Reid, Beth; Sehgal, Neelima; Sherwin, Blake D.; Sievers, Jon; Spergel, David N.; Staggs, Suzanne T.; Swetz, Daniel S.; Switzer, Eric R.; Thornton, Robert; Trac, Hy; Tucker, Carole; Warne, Ryan; Wilson, Grant; Wollack, Ed; Zhao, YueWe report on 23 clusters detected blindly as Sunyaev-Zel'dovich (SZ) decrements in a 148 GHz, 455 deg(2) map of the southern sky made with data from the Atacama Cosmology Telescope 2008 observing season. All SZ detections announced in this work have confirmed optical counterparts. Ten of the clusters are new discoveries. One newly discovered cluster, ACT-CL J0102-4915, with a redshift of 0.75 ( photometric), has an SZ decrement comparable to the most massive systems at lower redshifts. Simulations of the cluster recovery method reproduce the sample purity measured by optical follow-up. In particular, for clusters detected with a signal-to-noise ratio greater than six, simulations are consistent with optical follow-up that demonstrated this subsample is 100% pure. The simulations further imply that the total sample is 80% complete for clusters with mass in excess of 6 x 10(14) solar masses referenced to the cluster volume characterized by 500 times the critical density. The Compton y-X-ray luminosity mass comparison for the 11 best-detected clusters visually agrees with both self-similar and non-adiabatic, simulation-derived scaling laws.
- ItemTwo Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-end Variable-delay Polarization Modulator at 40 GHz(2021) Harrington, Kathleen; Datta, Rahul; Osumi, Keisuke; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brewer, Michael K.; Bustos, Ricardo; Chan, Manwei; Chuss, David T.; Cleary, Joseph; Couto, Jullianna Denes; Dahal, Sumit; Dunner, Rolando; Eimer, Joseph R.; Essinger-Hileman, Thomas; Hubmayr, Johannes; Espinoza Inostroza, Francisco Raul; Iuliano, Jeffrey; Karakla, John; Li, Yunyang; Marriage, Tobias A.; Miller, Nathan J.; Nunez, Carolina; Padilla, Ivan L.; Parker, Lucas; Petroff, Matthew A.; Pradenas Marquez, Bastian; Reeves, Rodrigo; Fluxa Rojas, Pedro; Rostem, Karwan; Valle, Deniz Augusto Nunes; Watts, Duncan J.; Weiland, Janet L.; Wollack, Edward J.; Xu, ZhileiThe Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2 less than or similar to l less than or similar to 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40GHz CLASS telescope. These timestreams are used to measure the 1/f noise and temperature-to-polarization (T -> P) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T -> P leakage of <3.8 x 10(-4) (95% confidence) across the focal plane. We examine the sources of 1/f noise present in the data and find the component of 1/f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 +/- 12 mu K-RJ root s for 1 mm of PWV when evaluated at 10 mHz; accounting for similar to 17% of the 1/f noise in the central pixels of the focal plane. The low levels of T -> P leakage and 1/f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes.
- ItemWeak-lensing Mass Calibration of ACTPol Sunyaev-Zel'dovich Clusters with the Hyper Suprime-Cam Survey(2019) Miyatake, Hironao; Battaglia, Nicholas; Hilton, Matt; Medezinski, Elinor; Nishizawa, Atsushi J.; More, Surhud; Aiola, Simone; Bahcall, Neta; Bond, J. Richard; Calabrese, Erminia; Choi, Steve K.; Devlin, Mark J.; Dunkley, Joanna; Dunner, Rolando; Fuzia, Brittany; Gallardo, Patricio; Gralla, Megan; Hasselfield, Matthew; Halpern, Mark; Hikage, Chiaki; Hill, J. Colin; Hincks, Adam D.; Hlozek, Renee; Huffenberger, Kevin; Hughes, John P.; Koopman, Brian; Kosowsky, Arthur; Louis, Thibaut; Madhavacheril, Mathew S.; McMahon, Jeff; Mandelbaum, Rachel; Marriage, Tobias A.; Maurin, Loic; Miyazaki, Satoshi; Moodley, Kavilan; Murata, Ryoma; Naess, Sigurd; Newburgh, Laura; Niemack, Michael D.; Nishimichi, Takahiro; Okabe, Nobuhiro; Oguri, Masamune; Osato, Ken; Page, Lyman; Partridges, Bruce; Robertson, Naomi; Sehgal, Neelima; Sherwin, Blake; Shirasaki, Masato; Sievers, Jonathan; Sifon, Cristobal; Simon, Sara; Spergel, David N.; Staggs, Suzanne T.; Stein, George; Takada, Masahiro; Trac, Hy; Umetsu, Keiichi; van Engelenl, Alex; Wollack, Edward J.We present weak-lensing measurements using the first-year data from the Hyper Suprime-Cam Strategic Survey Program on the Subaru telescope for eight galaxy clusters selected through their thermal Sunyaev-Zel'dovich (SZ) signal measured at 148 GHz with the Atacama Cosmology Telescope Polarimeter experiment. The overlap between the two surveys in this work is 33.8 square degrees, before masking bright stars. The signal-to-noise ratio of individual cluster lensing measurements ranges from 2.2 to 8.7, with a total of 11.1 for the stacked cluster weak-lensing signal. We fit for an average weak-lensing mass distribution using three different profiles, a Navarro-Frenk-White profile, a dark-matter-only emulated profile, and a full cosmological hydrodynamic emulated profile. We interpret the differences among the masses inferred by these models as a systematic error of 10%, which is currently smaller than the statistical error. We obtain the ratio of the SZ-estimated mass to the lensing-estimated mass (the so-called hydrostatic mass bias 1-b) of 0.74(-0.12)(+0.13), which is comparable to previous SZ-selected clusters from the Atacama Cosmology Telescope and from the Planck Satellite. We conclude with a discussion of the implications for cosmological parameters inferred from cluster abundances compared to cosmic microwave background primary anisotropy measurements.