Browsing by Author "Marieu, Vincent"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA new breaking wave height direct estimator from video imagery(ELSEVIER SCIENCE BV, 2012) Almar, Rafael; Cienfuegos, Rodrigo; Catalan, Patricio A.; Michallet, Herve; Castelle, Bruno; Bonneton, Philippe; Marieu, VincentBreaker height is a key parameter of nearshore processes and the demand for a continuous remote estimator is pressing. In this paper we present a standalone remote video-based method that estimates wave height at the breakpoint. Individual breaking events are first identified from changes in optical properties and wave height is further derived from the optical signature at the onset of breaking. An extended validation is performed using a dense wave basin dataset. The results show the ability of the method to measure individual breaker heights (9% of mean error, 18% RMS). In addition, the unique combination of in situ and remotely sensed data allows the estimation of two other breaking-related parameters, the height-to-depth ratio and wave front face slope, which show a substantial amount of dispersion. Because nearshore video systems are rapidly spreading over world coasts, this low-cost remote breaker height estimator should encounter large interest in coastal engineering studies. (C) 2011 Elsevier B.V. All rights reserved.
- ItemVideo-Based Detection of Shorelines at Complex Meso-Macro Tidal Beaches(2012) Almar, Rafael; Ranasinghe, Roshanka; Senechal, Nadia; Bonneton, Philippe; Roelvink, Dano; Bryan, Karin R.; Marieu, Vincent; Parisot, Jean-PaulRemote video imagery is widely used to acquire measurements of intertidal topography by means of shoreline detection, but, up to now, problems of accuracy were still encountered in the challenging case of energetic waves in nonuniform, meso macro tidal environments. Unique, simultaneous, video-based and global positioning system (GPS)-based measurements of shoreline were undertaken at Truc Vert (France), a beach with such characteristics. An innovative video method, referred to herein as the Minimum Shoreline Variability (MSV) method, was developed to cope with highly variable spatiotemporal shoreline properties. The comparison of video-based and GPS-derived shoreline data sets showed that using images averaged over short periods (30 s), rather than the traditionally used 10-min averaged images, significantly improved the accuracy of shoreline determination. A local video-derived, swash-based shoreline correction was also developed to correct for the MSV error, which was found to be linearly correlated to local swash length. By combining shorter time-averaged images and video derived local swash correction factors, the horizontal root mean square error associated with MSV shorelines was reduced to 1.2 m, which is equivalent to errors reported at more uniform, microtidal, and less-energetic beaches.