Browsing by Author "Lutz, D."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemEnhanced star formation rates in AGN hosts with respect to inactive galaxies from PEP-Herschel observations(2012) Santini, P.; Rosario, D. J.; Shao, L.; Lutz, D.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floc'h, E.; Magnelli, B.; Mainieri, V.; Nordon, R.; Garcia, A. M. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We compare the average star formation (SF) activity in X-ray selected AGN hosts with a mass-matched control sample of inactive galaxies, including both star forming and quiescent sources, in the 0.5 < z < 2.5 redshift range. Recent observations carried out by PACS, the 60-210 mu m photometric camera on board the Herschel Space Observatory, in GOODS-S, GOODS-N and COSMOS allow us to obtain an unbiased estimate of the far-IR luminosity, and hence of the SF properties, of the two samples. Accurate AGN host stellar mass estimates are obtained by decomposing their total emission into the stellar and the nuclear components. We report evidence of a higher average SF activity in AGN hosts with respect to the control sample of inactive galaxies. The level of SF enhancement is modest (similar to 0.26 dex at similar to 3 sigma confidence level) at low X-ray luminosities (L-X less than or similar to 10(43.5) erg s(-1)) and more pronounced (0.56 dex at >10 sigma confidence level) in the hosts of luminous AGNs. However, when comparing to star forming galaxies only, AGN hosts are found broadly consistent with the locus of their "main sequence". We investigate the relative far-IR luminosity distributions of active and inactive galaxies, and find a higher fraction of PACS detected, hence normal and highly star forming systems among AGN hosts. Although different interpretations are possible, we explain our findings as a consequence of a twofold AGN growth path: faint AGNs evolve through secular processes, with instantaneous AGN accretion not tightly linked to the current total SF in the host galaxy, while the luminous AGNs co-evolve with their hosts through periods of enhanced AGN activity and star formation, possibly through major mergers. While an increased SF activity with respect to inactive galaxies of similar mass is expected in the latter, we interpret the modest SF offsets measured in low-L-X AGN hosts as either a) generated by non-synchronous accretion and SF histories in a merger scenario or b) due to possible connections between instantaneous SF and accretion that can be induced by smaller scale (non-major merger) mechanisms. Far-IR luminosity distributions favour the latter scenario.
- ItemGOODS-Herschel: the far-infrared view of star formation in active galactic nucleus host galaxies since z ∼ 3(2012) Mullaney, J. R.; Pannella, M.; Daddi, E.; Alexander, D. M.; Elbaz, D.; Hickox, R. C.; Bournaud, F.; Altieri, B.; Aussel, H.; Coia, D.; Dannerbauer, H.; Dasyra, K.; Dickinson, M.; Hwang, H. S.; Kartaltepe, J.; Leiton, R.; Magdis, G.; Magnelli, B.; Popesso, P.; Valtchanov, I.; Bauer, F. E.; Brandt, W. N.; Del Moro, A.; Hanish, D. J.; Ivison, R. J.; Juneau, S.; Luo, B.; Lutz, D.; Sargent, M. T.; Scott, D.; Xue, Y. Q.We present a study of the infrared properties of X-ray selected, moderate-luminosity (i.e. L-X = 10(42)-10(44) erg s(-1)) active galactic nuclei (AGNs) up to z approximate to 3, in order to explore the links between star formation in galaxies and accretion on to their central black holes. We use 100 and 160 mu m fluxes from GOODS-Herschel - the deepest survey yet undertaken by the Herschel telescope - and show that in the vast majority of cases (i.e. > 94 per cent) these fluxes are dominated by emission from the host galaxy. As such, these far-infrared bands provide an uncontaminated view of star formation in the AGN host galaxies. We find no evidence of any correlation between the X-ray and infrared luminosities of moderate AGNs at any redshift, suggesting that global star formation is decoupled from nuclear (i.e. AGN) activity in these galaxies. On the other hand, we confirm that the star formation rates of AGN hosts increase strongly with redshift, by a factor of 43(-18)(+27) from z < 0.1 to z = 2-3 for AGNs with the same range of X-ray luminosities. This increase is entirely consistent with the factor of 25-50 increase in the specific star formation rates (SSFRs) of normal, star-forming (i.e. main-sequence) galaxies over the same redshift range. Indeed, the average SSFRs of AGN hosts are only marginally (i.e. approximate to 20 per cent) lower than those of main-sequence galaxies at all surveyed redshifts, with this small deficit being due to a fraction of AGNs residing in quiescent (i.e. low SSFR) galaxies. We estimate that 79 +/- 10 per cent of moderate-luminosity AGNs are hosted in main-sequence galaxies, 15 +/- 7 per cent in quiescent galaxies and < 10 per cent in strongly starbursting galaxies. We derive the fractions of all main-sequence galaxies at z < 2 that are experiencing a period of moderate nuclear activity, noting that it is strongly dependent on galaxy stellar mass (M-stars), rising from just a few per cent at M-stars similar to 10(10) M-circle dot to greater than or similar to 20 per cent at M-stars >= 10(11) M-circle dot. Our results indicate that it is galaxy stellar mass that is most important in dictating whether a galaxy hosts a moderate-luminosity AGN. We argue that the majority of moderate nuclear activity is fuelled by internal mechanisms rather than violent mergers, which suggests that high-redshift disc instabilities could be an important AGN feeding mechanism.
- ItemHerschel FIR counterparts of selected Lyα emitters at z ∼ 2.2 Fast evolution since z ∼ 3 or missed obscured AGNs?(2010) Bongiovanni, A.; Oteo, I.; Cepa, J.; Perez Garcia, A. M.; Sanchez-Portal, M.; Ederoclite, A.; Aguerri, J. A. L.; Alfaro, E. J.; Altieri, B.; Andreani, P.; Aparicio-Villegas, M. T.; Aussel, H.; Benitez, N.; Berta, S.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cava, A.; Cervino, M.; Chulani, H.; Cimatti, A.; Cristobal-Hornillos, D.; Daddi, E.; Dominguez, H.; Elbaz, D.; Fernandez-Soto, A.; Schreiber, N. Foerster; Genzel, R.; Gomez, M. F.; Gonzalez Delgado, R. M.; Grazian, A.; Gruppioni, C.; Herreros, J. M.; Iglesias Groth, S.; Infante, L.; Lutz, D.; Magnelli, B.; Magdis, G.; Maiolino, R.; Marquez, I.; Martinez, V. J.; Masegosa, J.; Moles, M.; Molino, A.; Nordon, R.; del Olmo, A.; Perea, J.; Poglitsch, A.; Popesso, P.; Pozzi, F.; Prada, F.; Quintana, J. M.; Riguccini, L.; Rodighiero, G.; Saintonge, A.; Sanchez, S. F.; Santini, P.; Shao, L.; Sturm, E.; Tacconi, L.; Valtchanov, I.Ly alpha emitters (LAEs) are seen everywhere in the redshift domain from local to z similar to 7. Far-infrared (FIR) counterparts of LAEs at different epochs could provide direct clues on dust content, extinction, and spectral energy distribution (SED) for these galaxies. We search for FIR counterparts of LAEs that are optically detected in the GOODS-North field at redshift z similar to 2.2 using data from the Herschel Space Telescope with the Photodetector Array Camera and Spectrometer (PACS). The LAE candidates were isolated via color-magnitude diagram using the medium-band photometry from the ALHAMBRA Survey, ancillary data on GOODS-North, and stellar population models. According to the fitting of these spectral synthesis models and FIR/optical diagnostics, most of them seem to be obscured galaxies whose spectra are AGN-dominated. From the analysis of the optical data, we have observed a fraction of AGN or composite over source total number of similar to 0.75 in the LAE population at z similar to 2.2, which is marginally consistent with the fraction previously observed at z = 2.25 and even at low redshift (0.2 < z < 0.45), but significantly different from the one observed at redshift similar to 3, which could be compatible either with a scenario of rapid change in the AGN fraction between the epochs involved or with a non detection of obscured AGN in other z = 2-3 LAE samples due to lack of deep FIR observations. We found three robust FIR (PACS) counterparts at z similar to 2.2 in GOODS-North. This demonstrates the possibility of finding dust emission in LAEs even at higher redshifts.
- ItemHerschel reveals the obscured star formation in HiZELS Hα emitters at z=1.47(2013) Ibar, E.; Sobral, D.; Best, P. N.; Ivison, R. J.; Smail, I.; Arumugam, V.; Berta, S.; Bethermin, M.; Bock, J.; Cava, A.; Conley, A.; Farrah, D.; Geach, J.; Ikarashi, S.; Kohno, K.; Le Floc'h, E.; Lutz, D.; Magdis, G.; Magnelli, B.; Marsden, G.; Oliver, S. J.; Page, M. J.; Pozzi, F.; Riguccini, L.; Schulz, B.; Seymour, N.; Smith, A. J.; Symeonidis, M.; Wang, L.; Wardlow, J.; Zemcov, M.We describe the far-infrared (far-IR; rest-frame 8-1000-mu m) properties of a sample of 443 H alpha-selected star-forming galaxies in the Cosmic Evolution Survey (COSMOS) and Ultra Deep Survey (UDS) fields detected by the High-redshift Emission Line Survey (HiZELS) imaging survey. Sources are identified using narrow-band filters in combination with broad-band photometry to uniformly select H alpha (and [O ii] if available) emitters in a narrow redshift slice at z = 1.47 +/- 0.02. We use a stacking approach in Spitzer-MIPS mid-IR, Herschel-PACS/SPIRE far-IR [from the PACS Evolutionary Prove (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES)] and AzTEC mm-wave images to describe their typical far-IR properties. We find that HiZELS galaxies with observed H alpha luminosities of L(H alpha)(obs) approximate to 10(8.1-9.1) L-circle dot ( approximate to 10(41.7-42.7) erg s(-1)) have bolometric far-IR luminosities of typical luminous IR galaxies, L(8-1000 mu m) approximate to 10(-0.006)(11.41)(+0.04) L-circle dot. Combining the H alpha and far-IR luminosities, we derive median star formation rates (SFRs) of SFRH alpha, FIR = 32 +/- 5 M-circle dot yr(-1) and H alpha extinctions of A(H alpha) = 1.0 +/- 0.2 mag. Perhaps surprisingly, little difference is seen in typical HiZELS extinction levels compared to local star-forming galaxies. We confirm previous empirical stellar mass (M-*) to A(H alpha) relations and the little or no evolution up to z = 1.47. For HiZELS galaxies (or similar samples) we provide an empirical parametrization of the SFR as a function of rest-frame (u - z) colours and 3.6-mu m photometry - a useful proxy to aid in the absence of far-IR detections in high-z galaxies. We find that the observed H alpha luminosity is a dominant SFR tracer when rest-frame (u - z) colours are less than or similar to 0.9 mag or when Spitzer-3.6-mu m photometry is fainter than 22 mag (Vega) or when stellar masses are lower than 10(9.7) M-circle dot. We do not find any correlation between the [O ii]/H alpha and far-IR luminosity, suggesting that this emission line ratio does not trace the extinction of the most obscured star-forming regions, especially in massive galaxies where these dominate. The luminosity-limited HiZELS sample tends to lie above of the so-called main sequence for star-forming galaxies, especially at low stellar masses, indicating high star formation efficiencies in these galaxies. This work has implications for SFR indicators and suggests that obscured star formation is linked to the assembly of stellar mass, with deeper potential wells in massive galaxies providing dense, heavily obscured environments in which stars can form rapidly.
- ItemINSIGHTS on the DUSTY TORUS and NEUTRAL TORUS from OPTICAL and X-RAY OBSCURATION in A COMPLETE VOLUME LIMITED HARD X-RAY AGN SAMPLE(2015) Davies, R.; Burtscher, L.; Rosario, D.; Storchi, T.; Contursi, A.; Genzel, R.; Carpio, J.; Hicks, E.; Janssen, A.; Ricci, Claudio; Koss, M.; Lin, Y.; Lutz, D.; Maciejewski, W.; Sanchez, F.; Xivry, G.; Riffel, R.
- ItemLLAMA : Nuclear stellar properties of Swift-BAT AGN and matched inactive galaxies(2018) Lin, Ming-Yi; Davies, R.I.; Hicks, E.K.S.; Burtscher, L.; Contursi, A.; Genzel, R.; Koss, M.; Lutz, D.; Maciejewski, W.; Ricci, Claudio
- ItemLLAMA: normal star formation efficiencies of molecular gas in the centres of luminous Seyfert galaxies.(2018) Rosario, D.; Ricci, Claudio; Treister, Ezequiel; Burtscher, L.; Davies, R. I.; Koss, M.; Lutz, D.; Riffel, R.; Alexander, D. M.; Genzel, R.; Hicks, E. H.
- ItemNon-linearity and environmental dependence of the star-forming galaxies main sequence(2016) Erfanianfar, G.; Popesso, P.; Finoguenov, A.; Wilman, D.; Wuyts, S.; Biviano, A.; Salvato, M.; Mirkazemi, M.; Morselli, L.; Bauer, Franz Erik; Ziparo, F.; Nandra, K.; Lutz, D.; Elbaz, D.; Tanaka, M.; Altieri, M.
- ItemNUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES(2013) Rosario, D. J.; Santini, P.; Lutz, D.; Netzer, H.; Bauer, F. E.; Berta, S.; Magnelli, B.; Popesso, P.; Alexander, D. M.; Brandt, W. N.; Genzel, R.; Maiolino, R.; Mullaney, J. R.; Nordon, R.; Saintonge, A.; Tacconi, L.; Wuyts, S.We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z similar to 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.
- ItemOn the relation of optical obscuration and X-ray absorption in Seyfert galaxies(2016) Burtscher, L.; Davies, R.; Gracia, J.; Koss, M.; Lin, M.; Lutz, D.; Nandra, P.; Netzer, H.; De Xivry, G.; Ricci, Claudio; Rosario, D.; Veilleux, S.; Contursi, A.; Genzel, R.; Schnorr, A.; Sternberg, A.; Sturm, E.; Tacconi, L.
- ItemThe ALMA-CRISTAL survey Discovery of a 15 kpc-long gas plume in a z=4.54 Lyman-α blob(2024) Solimano, M.; Gonzalez-Lopez, J.; Aravena, M.; Herrera-Camus, R.; De Looze, I.; Schreiber, N. M. Foerster; Spilker, J.; Tadaki, K.; Assef, R. J.; Barcos-Munoz, L.; Davies, R. L.; Diaz-Santos, T.; Ferrara, A.; Fisher, D. B.; Guaita, L.; Ikeda, R.; Johnston, E. J.; Lutz, D.; Mitsuhashi, I.; Moya-Sierralta, C.; Relano, M.; Naab, T.; Posses, A. C.; Telikova, K.; Uebler, H.; van der Giessen, S.; Veilleux, S.; Villanueva, V.Massive star-forming galaxies in the high-redshift universe host large reservoirs of cold gas in their circumgalactic medium (CGM). Traditionally, these reservoirs have been linked to diffuse H I Lyman-alpha (Ly alpha) emission extending beyond approximate to 10 kpc scales. In recent years, millimeter and submillimeter observations have started to identify even colder gas in the CGM through molecular and/or atomic tracers such as the [C II] 158 mu m transition. In this context, we studied the well-known J1000+0234 system at z = 4.54 that hosts a massive dusty star-forming galaxy (DSFG), a UV-bright companion, and a Ly alpha blob. We combined new ALMA [C II] line observations taken by the CRISTAL survey with data from previous programs targeting the J1000+0234 system, and achieved a deep view into a DSFG and its rich environment at a 0 ''. 2 = 1.3 kpc resolution. We identified an elongated [C II]-emitting structure with a projected size of 15 kpc stemming from the bright DSFG at the center of the field, with no clear counterpart at any other wavelength. The plume is oriented approximate to 40 degrees away from the minor axis of the DSFG, and shows significant spatial variation of its spectral parameters. In particular, the [C II] emission shifts from 180 km s(-1 )to 400 km s(-1) between the bottom and top of the plume, relative to the DSFG's systemic velocity. At the same time, the line width starts at 400 - 600 km s(-1) but narrows down to 190 km s(-1) at the top end of the plume. We discuss four possible scenarios to interpret the [C II] plume: a conical outflow, a cold accretion stream, ram pressure stripping, and gravitational interactions. While we cannot strongly rule out any of these with the available data, we disfavor the ram pressure stripping scenario due to the requirement of special hydrodynamic conditions.
- ItemThe host galaxies of X- ray selected active galactic nuclei to z=2.5 : Structure star formation and their relationships from CANDELS and Herschel/PACS(2015) Rosario, D. J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelsk, M.; Bauer, Franz Erik
- ItemThe mean star formation rate of X-ray selected active galaxies and its evolution from z ∼ 2.5: results from PEP-Herschel(2012) Rosario, D. J.; Santini, P.; Lutz, D.; Shao, L.; Maiolino, R.; Alexander, D. M.; Altieri, B.; Andreani, P.; Aussel, H.; Bauer, F. E.; Berta, S.; Bongiovanni, A.; Brandt, W. N.; Brusa, M.; Cepa, J.; Cimatti, A.; Cox, T. J.; Daddi, E.; Elbaz, D.; Fontana, A.; Schreiber, N. M. Foerster; Genzel, R.; Grazian, A.; Le Floch, E.; Magnelli, B.; Mainieri, V.; Netzer, H.; Nordon, R.; Garcia, I. Perez; Poglitsch, A.; Popesso, P.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Salvato, M.; Sanchez-Portal, M.; Sturm, E.; Tacconi, L. J.; Valtchanov, I.; Wuyts, S.We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (L-AGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2-3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies.