• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Leong, Kim Whye"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Deep learning for label-free nuclei detection from implicit phase information of mesenchymal stem cells
    (2021) Zhang, Zhengyun; Leong, Kim Whye; Van Vliet, Krystyn; Barbastathis, George; Ravasio, Andrea
    Monitoring of adherent cells in culture is routinely performed in biological and clinical laboratories, and it is crucial for large-scale manufacturing of cells needed in cell based clinical trials and therapies. However, the lack of reliable and easily implementable label-free techniques makes this task laborious and prone to human subjectivity. We present a deep-learning-based processing pipeline that locates and characterizes mesenchymal stem cell nuclei from a few bright-field images captured at various levels of defocus under collimated illumination. Our approach builds upon phase-from-defocus methods in the optics literature and is easily applicable without the need for special microscopy hardware, for example, phase contrast objectives, or explicit phase reconstruction methods that rely on potentially bias-inducing priors. Experiments show that this label-free method can produce accurate cell counts as well as nuclei shape statistics without the need for invasive staining or ultraviolet radiation. We also provide detailed information on how the deep-learning pipeline was designed, built and validated, making it straightforward to adapt our methodology to different types of cells. Finally, we discuss the limitations of our technique and potential future avenues for exploration. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback