Browsing by Author "Leiva, Rodrigo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemHATS-38 b and WASP-139 b Join a Growing Group of Hot Neptunes on Polar Orbits(2024) Espinoza-Retamal, Juan I.; Stefansson, Gudmundur; Petrovich, Cristobal; Brahm, Rafael; Jordan, Andres; Sedaghati, Elyar; Lucero, Jennifer P.; Pinto, Marcelo Tala; Munoz, Diego J.; Boyle, Gavin; Leiva, Rodrigo; Suc, VincentWe constrain the sky-projected obliquities of two low-density hot Neptune planets, HATS-38 b and WASP-139 b, orbiting nearby G and K stars using Rossiter-McLaughlin (RM) observations with VLT/ESPRESSO, yielding lambda=-108(-16)(+11) deg and -85.6(-4.2)(+7.7) deg, respectively. To model the RM effect, we use a new publicly available code, ironman, which is capable of jointly fitting transit photometry, Keplerian radial velocities, and RM effects. WASP-139 b has a residual eccentricity e=0.103(-0.041)(+0.050) while HATS-38 b has an eccentricity of e=0.112(-0.070)(+0.072), which is compatible with a circular orbit given our data. Using the obliquity constraints, we show that they join a growing group of hot and low-density Neptunes on polar orbits. We use long-term radial velocities to rule out companions with masses similar to 0.3-50 M-J within similar to 10 au. We show that the orbital architectures of the two Neptunes can be explained with high-eccentricity migration from greater than or similar to 2 au driven by an unseen distant companion. If HATS-38b has no residual eccentricity, its polar and circular orbit can also be consistent with a primordial misalignment. Finally, we performed a hierarchical Bayesian modeling of the true obliquity distribution of Neptunes and found suggestive evidence for a higher preponderance of polar orbits of hot Neptunes compared to Jupiters. However, we note that the exact distribution is sensitive to the choice of priors, highlighting the need for additional obliquity measurements of Neptunes to robustly compare the hot Neptune obliquity distribution to Jupiters.
- ItemThe Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b(2023) Espinoza Retamal, Juan; Brahm, Rafael; Petrovich, Cristobal; Jordán, Andrés; Stefánsson, Guðmundur; Sedaghati, Elyar; Hobson, Melissa J.; Muñoz, Diego J.; Boyle, Gavin; Leiva, Rodrigo; Suc, VincentHigh-eccentricity tidal migration predicts the existence of highly eccentric proto-hot Jupiters on the "tidal circularization track," meaning that they might eventually become hot Jupiters, but that their migratory journey remains incomplete. Having experienced moderate amounts of the tidal reprocessing of their orbital elements, proto-hot Jupiters systems can be powerful test-beds for the underlying mechanisms of eccentricity growth. Notably, they may be used for discriminating between variants of high-eccentricity migration, each predicting a distinct evolution of misalignment between the star and the planet's orbit. We constrain the spin-orbit misalignment of the proto-hot Jupiter TOI-3362b with high-precision radial velocity observations using ESPRESSO at VLT. The observations reveal a sky-projected obliquity $\lambda = 1.2_{-2.7}^{+2.8}$ deg and constrain the orbital eccentricity to $e=0.720 \pm 0.016$, making it one of the most eccentric gas giants for which the obliquity has been measured. The large eccentricity and the striking orbit alignment of the planet suggest that ongoing coplanar high-eccentricity migration driven by a distant companion is a likely explanation for the system's architecture. This distant companion would need to reside beyond 5 au at 95% confidence to be compatible with the available radial velocity observations....
- ItemThree Warm Jupiters around Solar-analog Stars Detected with TESS(2023) Eberhardt, Jan; Hobson, Melissa J.; Henning, Thomas; Trifonov, Trifon; Brahm, Rafael; Espinoza, Nestor; Jordan, Andres; Thorngren, Daniel; Burn, Remo; Rojas, Felipe I.; Sarkis, Paula; Schlecker, Martin; Pinto, Marcelo Tala; Barkaoui, Khalid; Schwarz, Richard P.; Suarez, Olga; Guillot, Tristan; Triaud, Amaury H. M. J.; Gunther, Maximilian N.; Abe, Lyu; Boyle, Gavin; Leiva, Rodrigo; Suc, Vincent; Evans, Phil; Dunckel, Nick; Ziegler, Carl; Falk, Ben; Fong, William; Rudat, Alexander; Shporer, Avi; Striegel, Stephanie; Watanabe, David; Jenkins, Jon M.; Seager, Sara; Winn, Joshua N.We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every similar to 13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m(p) = 9.3(-0.2)(+0.2)Mjup and a radius of r(p) = 0.93(-0.2)(+0.2) jup. With a mean density of r = 14.4 1.0 g cm + 0.9 -3, TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of similar to 8.3 days and an eccentricity of e = 0.32 0.02 + 0.02. TOI-2416 b is more massive than Jupiter with m(p) = 3.0 +0.09 M 0.10 jup, however is significantly smaller with a radius of r(p) = 0.88 + 0.02 ,R 0.02 jup, leading to a high mean density of r = 5.4 0.3 g cm + 0.3 -3. TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every similar to 7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m(p)=0.64- + 0.04 M 0.04 jup, and is consistent with an inflated radius of r(p)= 1.00- + 0.03 R 0.02 jup, leading to a low mean density of r = 0.79 0.08 g cm + 0.08 -3. The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 860 10 +10 K, 1080 10 +10 K, and 1100-20 +20 K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters.