Browsing by Author "Largier, John L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA Decade of Death and Other Dynamics: Deepening Perspectives on the Diversity and Distribution of Sea Stars and Wasting(2023) Dawson, Michael N.; Duffin, Paige J.; Giakoumis, Melina; Schiebelhut, Lauren M.; Beas-Luna, Rodrigo; Bosley, Keith L.; Castilho, Rita; Ewers-Saucedo, Christine; Gavenus, Katie A.; Keller, Aimee; Konar, Brenda; Largier, John L.; Lorda, Julio; Miner, C. Melissa; Moritsch, Monica M.; Navarrete, Sergio A.; Traiger, Sarah B.; Turner, Mo S.; Wares, John P.Mass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of similar to 2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.
- ItemModeling time-varying phytoplankton subsidy reveals at-risk species in a Chilean intertidal ecosystem(2024) Duckwall, Casey; Largier, John L.; Wieters, Evie A.; Valdovinos, Fernanda S.The allometric trophic network (ATN) framework for modeling population dynamics has provided numerous insights into ecosystem functioning in recent years. Herein we extend ATN modeling of the intertidal ecosystem off central Chile to include empirical data on pelagic chlorophyll-a concentration. This intertidal community requires subsidy of primary productivity to support its rich ecosystem. Previous work models this subsidy using a constant rate of phytoplankton input to the system. However, data shows pelagic subsidies exhibit highly variable, pulse-like behavior. The primary contribution of our work is incorporating this variable input into ATN modeling to simulate how this ecosystem may respond to pulses of pelagic phytoplankton. Our model results show that: (1) closely related sea snails respond differently to phytoplankton variability, which is explained by the underlying network structure of the food web; (2) increasing the rate of pelagic-intertidal mixing increases fluctuations in species' biomasses that may increase the risk of local extirpation; (3) predators are the most sensitive species to phytoplankton biomass fluctuations, putting these species at greater risk of extirpation than others. Finally, our work provides a straightforward way to incorporate empirical, time-series data into the ATN framework that will expand this powerful methodology to new applications.