• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lachaux, Jean-Philippe"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Brain state-dependent recruitment of high-frequency oscillations in the human hippocampus
    (2017) Billeke, Pablo; Ossandón, Tomás; Stockle, Marcelo; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe; Fuentealba, Pablo
  • No Thumbnail Available
    Item
    Efficient "Pop-Out" Visual Search Elicits Sustained Broadband Gamma Activity in the Dorsal Attention Network
    (2012) Ossandon, Tomas; Vidal, Juan R.; Ciumas, Carolina; Jerbi, Karim; Hamame, Carlos M.; Dalal, Sarang S.; Bertrand, Olivier; Minotti, Lorella; Kahane, Philippe; Lachaux, Jean-Philippe
    An object that differs markedly from its surrounding-for example, a red cherry among green leaves-seems to pop out effortlessly in our visual experience. The rapid detection of salient targets, independently of the number of other items in the scene, is thought to be mediated by efficient search brain mechanisms. It is not clear, however, whether efficient search is actually an "effortless" bottom-up process or whether it also involves regions of the prefrontal cortex generally associated with top-down sustained attention. We addressed this question with intracranial EEG (iEEG) recordings designed to identify brain regions underlying a classic visual search task and correlate neural activity with target detection latencies on a trial-by-trial basis with high temporal precision recordings of these regions in epileptic patients. The spatio-temporal dynamics of single-trial spectral analysis of iEEG recordings revealed sustained energy increases in a broad gamma band (50-150 Hz) throughout the duration of the search process in the entire dorsal attention network both in efficient and inefficient search conditions. By contrast to extensive theoretical and experimental indications that efficient search relies exclusively on transient bottom-up processes in visual areas, we found that efficient search is mediated by sustained gamma activity in the dorsal lateral prefrontal cortex and the anterior cingulate cortex, alongside the superior parietal cortex and the frontal eye field. Our findings support the hypothesis that active visual search systematically involves the frontal-parietal attention network and therefore, executive attention resources, regardless of target saliency.
  • No Thumbnail Available
    Item
    Functional selectivity in the human occipitotemporal cortex during natural vision: Evidence from combined intracranial EEG and eye-tracking
    (2014) Hamame, Carlos M.; Vidal, Juan R.; Perrone-Bertolotti, Marcela; Ossandon, Tomas; Jerbi, Karim; Kahane, Philippe; Bertrand, Olivier; Lachaux, Jean-Philippe
    Eye movements are a constant and essential component of natural vision, yet, most of our knowledge about the human visual system comes from experiments that restrict them. This experimental constraint is mostly in place to control visual stimuli presentation and to avoid artifacts in non-invasive measures of brain activity, however, this limitation can be overcome with intracranial EEG (iEEG) recorded from epilepsy patients. Moreover, the high-frequency components of the iEEG signal (between about 50 and 150 Hz) can provide a proxy of population-level spiking activity in any cortical area during free-viewing. We combined iEEG with high precision eye-tracking to study fine temporal dynamics and functional specificity in the fusiform face (FFA) and visual word form area (VWFA) while patients inspected natural pictures containing faces and text. We defined the first local measure of visual (electrophysiological) responsiveness adapted to free-viewing in humans: amplitude modulations in the high-frequency activity range (50-150 Hz) following fixations (fixation-related high-frequency response). We showed that despite the large size of receptive fields in the ventral occipito-temporal cortex, neural activity during natural vision of realistic cluttered scenes is mostly dependent upon the category of the foveated stimulus - suggesting that category-specificity is preserved during free-viewing and that attention mechanisms might filter out the influence of objects surrounding the fovea. (C) 2014 Elsevier Inc. All rights reserved.
  • No Thumbnail Available
    Item
    Human Anterior Insula Encodes Performance Feedback and Relays Prediction Error to the Medial Prefrontal Cortex
    (2020) Billeke, Pablo; Ossandon, Tomas; Perrone-Bertolotti, Marcela; Kahane, Philippe; Bastin, Julien; Jerbi, Karim; Lachaux, Jean-Philippe; Fuentealba, Pablo
    Adaptive behavior requires the comparison of outcome predictions with actual outcomes (e.g., performance feedback). This process of performance monitoring is computed by a distributed brain network comprising the medial prefrontal cortex (mPFC) and the anterior insular cortex (AIC). Despite being consistently co-activated during different tasks, the precise neuronal computations of each region and their interactions remain elusive. In order to assess the neural mechanism by which the AIC processes performance feedback, we recorded AIC electrophysiological activity in humans. We found that the AIC beta oscillations amplitude is modulated by the probability of performance feedback valence (positive or negative) given the context (task and condition difficulty). Furthermore, the valence of feedback was encoded by delta waves phase-modulating the power of beta oscillations. Finally, connectivity and causal analysis showed that beta oscillations relay feedback information signals to the mPFC. These results reveal that structured oscillatory activity in the anterior insula encodes performance feedback information, thus coordinating brain circuits related to reward-based learning.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback