Browsing by Author "Labra, Fabio A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemDNA barcoding of marine polychaetes species of southern Patagonian fjords(2011) Maturana, Claudia S.; Moreno, Rodrigo A.; Labra, Fabio A.; Gonzalez-Wevar, Claudio A.; Rozbaczylo, Nicolas; Carrasco, Franklin D.; Poulin, ElieAccurate species identification remains a basic first step in any study of biodiversity, particularly for global changes and their consequences. Thus, there is a pressing need for taxonomic expertise in a broad range of taxa. DNA barcoding has proved to be a powerful alternative method to traditional morphological approaches, allowing to complement identification techniques for living organisms. In this study, we assess intraspecific and interspecific genetic divergence among marine polychaetes from Patagonian fjords of southern Chile, using mitochondrial Cytochrome c Oxidase Subunit I (COI) gene. Our results showed that a total of 13 polychaetes species identified in this study exhibited high levels of interspecific variation among 31 analyzed sequences. Mean pairwise sequence distances comparisons based on K2P within species ranged from 0.2 to 0.4%. In contrast, interspecific comparisons were much higher and ranged between 18 to 47%, with the exception of the congeneric species Asychis chilensis and Asychis amphiglypta that showed high levels of genetic similarities and absence of reciprocal monophyly. This study presents the first information on DNA barcoding for polychaetes species in the southern Chile, and it establishes the effectiveness of DNA barcoding for identification of marine polychaetes species from Patagonian Fjords, thus making it available to a much broader range of scientists.
- ItemFunctional biogeography of coastal marine invertebrates along the south-eastern Pacific coast reveals latitudinally divergent drivers of taxonomic versus functional diversity(John Wiley and Sons Inc, 2023) Herrera Paz, David Leonardo; Navarrete Campos, Sergio Andrés; Labra, Fabio A.; Castillo, Simón P.; Opazo Mella, Luis FelipeCharacterizing the spatial structure of taxonomic and functional diversity (FD) of marine organisms across regional and latitudinal scales is essential for improving our understanding of the processes driving species richness and those that may constrain or enhance the set of species traits that define the functional structure of communities. Here, we present the functional diversity of coastal invertebrate macrofaunal species along the south-eastern Pacific from 7°N to 56°S, describe spatial variation of species traits, and examine the relationship with environmental variables. For that, we defined the functional traits and distribution ranges of 2350 marine macroinvertebrates calculated eight metrics of FD. Random forest regression was applied to identify significant relationships between FD and six environmental variables. Finally, functional β-turnover was estimated to detect alongshore shifts in functional structure and their coincidence with biogeographical domains. Our results show, in contrast with taxonomic richness that measures of trait differences, functional space and functional specialisation increase with latitude, while functional evenness exhibits a non-linear shape, peaking at mid latitudes. Functional redundancy decreased significantly poleward, while indicators of vulnerability increase. In contrast to taxonomic richness, FD was tightly connected to variables indicative of stress and productivity, such as dissolved oxygen and nutrients. Sea surface temperature and coastal area best explained the increased FD redundancy and richness towards the tropics. The high spatial correlation between taxonomic and functional turnover suggests environmental filters play an important role in the functional structure of the seascape. Our findings suggest that processes favouring taxonomic richness are latitudinally divergent from those favouring functional diversity. Correlations with environmental variables suggest that increased sea surface temperature and measures of stability increase redundancy, while variations in dissolved oxygen and nutrients positively affect functional diversification. Moreover, the functional diversity patterns suggest low resilience of high latitude coastal ecosystems, which are heavily exploited and threatened by climate change, hence highlighting the urgent need for effective conservation policies.
- ItemGeographic variation in trace-element signatures in the statoliths of near-hatch larvae and recruits of Concholepas concholepas (loco)(2012) Manriquez, Patricio H.; Galaz, Sylvana P.; Opitz, Tania; Hamilton, Scott; Paradis, George; Warner, Robert R.; Carlos Castilla, Juan; Labra, Fabio A.; Lagos, Nelson A.Spatial variation of trace elements in calcified structures (otoliths, statoliths, and shells) has been used to track the movements of individuals among habitats, and connectivity between marine populations. In the present study, we used laser ablation-inductively coupled plasma mass spectrometry to quantify the concentrations of trace elements in statoliths of prehatch larvae and recruits of the gastropod Concholepas concholepas from 3 regions in Chile. We also examined spatial variation in chemical signatures deposited during larval life and at the time of settlement in intertidal habitats. We found significant differences between 3 geographic regions in the trace element concentrations recorded in natal statoliths of near-hatch larvae and in natal core and edge areas of recruit statoliths. Discriminant function analysis indicates that natal signatures of near-hatch larvae and the cores and edges of recruit statoliths show spatial segregation among regions. High levels of reclassification success of larvae to the origin region suggest potential for assigning recruits to the corresponding matching region. Concentrations of trace elements in the natal cores of recruit statoliths fell relatively close but did not overlap with the discriminant space occupied by larvae, and at regional scales the pattern of geographic variation of recruit statoliths resembles that of larval statoliths. This suggests population grouping and little population interchange at this regional scale. Assessing population stocks and connectivity of this species at smaller scales along the Chilean coast will only be possible with more finely structured sampling and a better understanding of temporal variation in the chemical environment.