Browsing by Author "López, S."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- ItemDeterminants of volumetric breast density in Chilean premenopausal women(2017) Uauy, Ricardo; Garmendia, M.; Pereira, A.; Neira, P.; López, S.; Malkov, S.; Shepherd, J.
- ItemFirst-principles study of electronic, vibrational, elastic, and magnetic properties of FeF2 as a function of pressure(2012) López, S.; Mejía López, José Félix
- ItemGalaxy clusters in the line of sight to background quasars. I. Survey design and incidence of MgII absorbers at cluster redshifts(2008) López, S.; Barrientos, Luis Felipe; Padilla, Nelson
- ItemMapping the spatial extent of H I-rich absorbers using Mg II absorption along gravitational arcs(2025) Berg, T. A. M.; Afruni, A.; Ledoux, C.; López, S.; Noterdaeme, P.; Tejos, N.; Hernández Guajardo, Joaquín Aléxis; Barrientos, Luis Felipe; Johnston, E. J.H I-rich absorbers seen within quasar spectra contain the bulk of neutral gas in the Universe. However, the spatial extent of these reservoirs are not extensively studied due to the pencil beam nature of quasar sightlines. Using two giant gravitational arc fields (at redshifts 1.17 and 2.06) as 2D background sources with known strong Mg II absorption observed with the Multi Unit Spectroscopic Explorer integral field spectrograph (IFS), we investigated whether spatially mapped Mg II absorption can predict the presence of strong H I systems, and determine both the physical extent and H I mass of the two absorbing systems. We created a simple model of an ensemble of gas clouds in order to simultaneously predict the H I column density and gas covering fraction of H I-rich absorbers based on observations of the Mg II rest-frame equivalent width in IFS spaxels. We first test the model on the lensing field with H I observations already available from the literature, finding that we can recover H I column densities consistent with the previous estimates (although with large uncertainties). We then use our framework to simultaneously predict the gas covering fraction, H I column density and total H I gas mass (MHI) for both fields. We find that both of the observed strong systems have a covering fraction of ≈ 70% and are likely damped Lyman α systems (DLAs) with MHI > 109 M⊙. Our model shows that the typical Mg II metrics used in the literature to identify the presence of DLAs are sensitive to the gas covering fraction. However, these Mg II metrics are still sensitive to strong H I, and can be still applied to absorbers towards gravitational arcs or other spatially extended background sources. Based on our results, we speculate that the two strong absorbers are likely representative of a neutral inner circumgalactic medium and are a significant reservoir of fuel for star formation within the host galaxies.
- ItemMolecular gas budget and characterization of intermediate-mass star-forming galaxies at z ≈ 2–3(2021) Solimano, M. ; González-López, J. ; Barrientos, L. F. ; Aravena, M. ; López, S. ; Tejos, N. ; Sharon, K. ; Dahle, H. ; Bayliss, M. ; Ledoux, C. ; Rigby, J. R. ; Gladders, M.Star-forming galaxies (SFGs) with stellar masses below 10(10) M-circle dot make up the bulk of the galaxy population at z > 2. The properties of the cold gas in these galaxies can only be probed in very deep observations or by targeting strongly lensed galaxies. Here we report the results of a pilot survey using the Atacama Compact Array of molecular gas in the most strongly magnified galaxies selected as giant arcs in optical data. The selection in rest-frame ultraviolet (UV) wavelengths ensures that sources are regular SFGs, without a priori indications of intense dusty starburst activity. We conducted Band 4 and Band 7 observations to detect mid-J CO, [C I] and thermal continuum as molecular gas tracers from four strongly lensed systems at z approximate to 2-3: our targets are SGAS J1226651.3+215220 (A and B), SGAS J003341.5+024217 and the Sunburst Arc. The measured molecular mass was then projected onto the source plane with detailed lens models developed from high resolution Hubble Space Telescope observations. Multiwavelength photometry was then used to obtain the intrinsic stellar mass and star formation rate via spectral energy distribution modeling. In only one of the sources are the three tracers robustly detected, while in the others they are either undetected or detected in continuum only. The implied molecular gass masses range from 4 x 10(9) M-circle dot in the detected source to an upper limit of less than or similar to 10(9) M-circle dot in the most magnified source. The inferred gas fraction and gas depletion timescale are found to lie approximately 0.5-1.0 dex below the established scaling relations based on previous studies of unlensed massive galaxies, but in relative agreement with existing literature about UV-bright lensed galaxies at these high redshifts. Our results indicate that the cold gas content of intermediate to low mass galaxies should not be extrapolated from the trends seen in more massive high-z galaxies. The apparent gas deficit is robust against biases in the stellar mass or star formation rate. However, we find that in this mass-metallicity range, the molecular gas mass measurements are severely limited by uncertainties in the current tracer-to-gas calibrations.
- ItemPhotometric classification of quasars from RCS-2 using Random Forest(2015) Carrasco, D.; Barrientos, Luis Felipe; Pichara Baksai, Karim Elías; Anguita, T.; Murphy, D. N. A.; Gilbank, D. G.; Gladders, M. D.; Yee, H. K. C.; Hsieh, B. C.; López, S.
- ItemStructure and electronic properties of iron oxide clusters: A first-principles study(2009) López, S.; Mejía López, José Félix
- ItemTelltale signs of metal recycling in the circumgalactic medium of a z 0.77 galaxy(2021) Tejos, N.; López, S.; Ledoux, C.; Fernández-Figueroa, A.; Rivas, N.; Sharon, K.; Johnston, E. J.; Florian, M. K.; D'Ago, G.; Katsianis, A.; Barrientos, F.; Berg, T.; Corro-Guerra, F.; Hamel, M.; Moya-Sierralta, C.; Poudel, S.; Rigby, J. R.; Solimano, M.We present gravitational-arc tomography of the cool-warm enriched circumgalactic medium (CGM) of an isolated galaxy ('G1') at z approximate to 0.77. Combining VLT/MUSE adaptive-optics and Magellan/MagE echelle spectroscopy, we obtain partially resolved kinematics of Mg II in absorption and [O II] in emission. The unique arc configuration allows us to probe 42 spatially independent arc positions transverse to G1, plus four positions in front of it. The transverse positions cover G1's minor and major axes at impact parameters of approximate to 10-30 and approximate to 60kpc, respectively. We observe a direct kinematic connection between the cool-warm enriched CGM (traced by Mg II) and the interstellar medium (traced by [O II]). This provides strong evidence for the existence of an extended disc that co-rotates with the galaxy out to tens of kiloparsecs. The Mg II velocity dispersion (sigma approximate to 30-100 km s(-1), depending on position) is of the same order as the modelled galaxy rotational velocity (v(rot) approximate to 80 km s(-1)), providing evidence for the presence of a turbulent and pressure-supported CGM component. We regard the absorption to be modulated by a galactic-scale outflow, as it offers a natural scenario for the observed line-of-sight dispersion and asymmetric profiles observed against both the arcs and the galaxy. An extended enriched co-rotating disc together with the signatures of a galactic outflow, are telltale signs of metal recycling in the z similar to 1 CGM.
- ItemThe FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway(2021) Recabal, A.; Fernández, P.; López, S.; Barahona, M. J.; Ordenes, P.; Palma, A.; Elizondo-Vega, R.; Farkas, C.; Uribe, A.; Sáez, Juan Carlos; Caprile, T.; García-Robles, M. A.