• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kwak, Chulkwang"

Now showing 1 - 8 of 8
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    ASYMPTOTIC DYNAMICS FOR THE SMALL DATA WEAKLY DISPERSIVE ONE-DIMENSIONAL HAMILTONIAN ABCD SYSTEM
    (2020) Kwak, Chulkwang; Munoz, Claudio
    Consider the Hamiltonian abed system in one dimension, with data posed in the energy space H-1 x H-1. This model, introduced by Bona, Chen, and Saut, is a well-known physical generalization of the classical Boussinesq equations. The Hamiltonian case corresponds to the regime where a, c < 0 and b = d > 0. Under this regime, small solutions in the energy space are globally defined. A first proof of decay for this 2 x 2 system was given in [J. Math. Pure Appl. (9) 127 (2019), 121-159] in a strongly dispersive regime, i.e., under essentially the conditions
  • Loading...
    Thumbnail Image
    Item
    Local well-posedness of the fifth-order KdV-type equations on the half-line
    (2019) Cavalcante, M.; Kwak, Chulkwang
  • Loading...
    Thumbnail Image
    Item
    Low regularity Cauchy problem for the fifth-order modified KdV equations on T
    (2018) Kwak, Chulkwang
  • No Thumbnail Available
    Item
    On the Dynamics of Zero-Speed Solutions for Camassa-Holm-Type Equations
    (2021) Alejo, Miguel A.; Cortez, Manuel Fernando; Kwak, Chulkwang; Munoz, Claudio
    In this paper, we consider globally defined solutions of Camassa-Holm (CH)-type equations outside the well-known nonzero-speed, peakon region. These equations include the standard CH and Degasperis-Procesi (DP) equations, as well as nonintegrable generalizations such as the b-family, elastic rod, and Benjamin-Bona-Mahony (BBM) equations. Having globally defined solutions for these models, we introduce the notion of zero-speed and breather solutions, i.e., solutions that do not decay to zero as t ->+infinity on compact intervals of space. We prove that, under suitable decay assumptions, such solutions do not exist because the identically zero solution is the global attractor of the dynamics, at least in a spatial interval of size vertical bar x vertical bar less than or similar to t(1/2-) as t ->+infinity. As a consequence, we also show scattering and decay in CH-type equations with long-range nonlinearities. Our proof relies in the introduction of suitable virial functionals a la Martel-Merle in the spirit of the works of [74, 75] and [50] adapted to CH-, DP-, and BBM-type dynamics, one of them placed in L-x(1) and the 2nd one in the energy space H-x(1). Both functionals combined lead to local-in-space decay to zero in vertical bar x vertical bar less than or similar to t(1/2-) as t -> +infinity. Our methods do not rely on the integrable character of the equation, applying to other nonintegrable families of CH-type equations as well.
  • Loading...
    Thumbnail Image
    Item
    Periodic fourth-order cubic NLS : local well-posedness and non-squeezing property
    (2018) Kwak, Chulkwang
  • Loading...
    Thumbnail Image
    Item
    Probabilistic well-posedness of generalized KdV
    (2018) Hwang, G.; Kwak, Chulkwang
  • Loading...
    Thumbnail Image
    Item
    The scattering problem for Hamiltonian ABCD Boussinesq systems in the energy space
    (2019) Kwak, Chulkwang; Muñoz, C.; Poblete, F.; Pozo, J. C.
  • Loading...
    Thumbnail Image
    Item
    Well-posedness issues on the periodic modified Kawahara equation
    (2020) Kwak, Chulkwang

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback