Browsing by Author "Kunzler, Marcos R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemLocal experience of laboratory activities in a BS physical therapy course: integrating sEMG and kinematics technology with active learning across six cohorts(2024) de la Fuente, Carlos; Neira, Alejandro; Machado, Alvaro S.; Delgado-Bravo, Mauricio; Kunzler, Marcos R.; de Andrade, Andre Gustavo P.; Carpes, Felipe P.Introduction Integrating technology and active learning methods into Laboratory activities would be a transformative educational experience to familiarize physical therapy (PT) students with STEM backgrounds and STEM-based new technologies. However, PT students struggle with technology and feel comfortable memorizing under expositive lectures. Thus, we described the difficulties, uncertainties, and advances observed by faculties on students and the perceptions about learning, satisfaction, and grades of students after implementing laboratory activities in a PT undergraduate course, which integrated surface-electromyography (sEMG) and kinematic technology combined with active learning methods. Methods Six cohorts of PT students (n = 482) of a second-year PT course were included. The course had expositive lectures and seven laboratory activities. Students interpreted the evidence and addressed different motor control problems related to daily life movements. The difficulties, uncertainties, and advances observed by faculties on students, as well as the students' perceptions about learning, satisfaction with the course activities, and grades of students, were described. Results The number of students indicating that the methodology was "always" or "almost always," promoting creative, analytical, or critical thinking was 70.5% [61.0-88.0%]. Satisfaction with the whole course was 97.0% [93.0-98.0%]. Laboratory grades were linearly associated to course grades with a regression coefficient of 0.53 and 0.43 R-squared (p < 0.001). Conclusion Integrating sEMG and kinematics technology with active learning into laboratory activities enhances students' engagement and understanding of human movement. This approach holds promises to improve teaching-learning processes, which were observed consistently across the cohorts of students.
- ItemUnderstanding the effect of window length and overlap for assessing sEMG in dynamic fatiguing contractions: A non-linear dimensionality reduction and clustering(2021) De la Fuente, Carlos; Martinez-Valdes, Eduardo; Ignacio Priego-Quesada, Jose; Weinstein, Alejandro; Valencia, Oscar; Kunzler, Marcos R.; Alvarez-Ruf, Joel; Carpes, Felipe P.The Short-Time Fourier transform (STFT) is a helpful tool to identify muscle fatigue with clinical and sports applications. However, the choice of STFT parameters may affect the estimation of myoelectrical manifestations of fatigue. Here, we determine the effect of window length and overlap selections on the frequency slope and the coefficient of variation from EMG spectrum features in fatiguing contractions. We also determine whether STFT parameters affect the relationship between frequency slopes and task failure. Eighty-eight healthy adult men performed one-leg heel-rise until exhaustion. A factorial design with a window length of 50, 100, 250, 500, and 1000 ms with 0, 25, 50, 75, and 90% of overlap was used. The frequency slope was non-linearly fitted as a task failure function, followed by a dimensionality reduction and clustering analysis. The STFT parameters elicited five patterns. A small window length produced a higher slope frequency for the peak frequency (p < 0.001). The contrary was found for the mean and median frequency (p < 0.001). A larger window length elicited a higher slope frequency for the mean and peak frequencies. The largest frequency slope and dispersion was found for a window length of 50 ms without overlap using peak frequency. A combination of 250 ms with 50% of overlap reduced the dispersion both for peak, median, and mean frequency, but decreased the slope frequency. Therefore, the selection of STFT parameters during dynamic contractions should be accompanied by a mechanical measure of the task failure, and its parameters should be adjusted according to the experiment's requirements.