• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kunze, Karl"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Cardiac Magnetic Resonance Fingerprinting for Simultaneous T1, T2, and Fat-Fraction Quantification at 0.55 T
    (2025) Pedraza, Diego; Castillo-Passi, Carlos; Kunze, Karl; Botnar, René M.; Prieto, Claudia
    Cardiac magnetic resonance fingerprinting (cMRF) has been shown to allow for simultaneous quantitative characterization of myocardial tissue in a single scan. While cMRF has been assessed at 1.5 T and 3 T, its application at 0.55 T has not been demonstrated yet. This study introduces an adapted version of a previously implemented Dixon cMRF sequence designed for simultaneous quantification of T1, T2, and fat fraction (FF) at 1.5 T, to be employed at 0.55 T within a single breath-hold scan. The sequence was developed using the Pulseq environment and employs a radial tiny golden angle acquisition with bipolar readout. Reconstruction was performed using low-rank inversion in combination with a high-dimensional patch-based regularization. The Dixon cMRF technique at 0.55 T was tested on standardized phantoms and 15 healthy volunteers (HVs). cMRF at 0.55 T was compared to spin-echo (SE) and proton density references from phantoms, as well as conventional T1, T2, and FF mapping sequences at 0.55 T. Intrasession and intersession variability was assessed in phantoms and a representative HV. Results showed a good correlation between the proposed cMRF T1, T2, and FF at 0.55 T and the phantom IR-SE references (R 2  ≥ 0.98 for T1 and T2, R 2  ≥ 0.97 for FF). Intrasession variability was low (8.9 ± 13.8 ms for T1, 0.1 ± 1 ms for T2, and 0.02 ± 0.03% for FF), as was intersession variability (8.2 ± 8.5 ms, 0.4 ± 1.1 ms, and 0.02 ± 0.25%, respectively). In vivo assessments yielded good map quality, with mean myocardial values of 714 ± 24 ms for T1, 49 ± 5.9 ms for T2, and 2.6 ± 0.9% for FF in comparison to 672 ± 40 for T1-MOLLI, 60 ± 5.4 for T2prep-bSSFP, and 4.7 ± 2.4% for 2-echo PDFF, respectively. The technique demonstrated good agreement for T1 and FF, but T2 was underestimated, which is consistent with findings at higher field strengths. Further investigation in a larger cohort of healthy subjects and in patients with cardiovascular disease is warranted.
  • Loading...
    Thumbnail Image
    Item
    End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA
    (2021) Qi, Haikun; Hajhosseiny, Reza; Cruz, Gastao; Kuestner, Thomas; Kunze, Karl; Neji, Radhouene; Botnar, René Michael; Prieto Vásquez, Claudia
    Purpose: To develop an end-to-end deep learning technique for nonrigid motion-corrected (MoCo) reconstruction of ninefold undersampled free-breathing whole-heart coronary MRA (CMRA).

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback