• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kruehler, T."

Now showing 1 - 14 of 14
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS
    (IOP PUBLISHING LTD, 2014) Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; Kruehler, T.; Karjalainen, R.; Osborne, J. P.; Pian, E.; Sanchez Ramirez, R.; Schmidt, B.; Skillen, I.; Tagliaferri, G.; Thoene, C.; Vaduvescu, O.; Wijers, R. A. M. J.; Zauderer, B. A.
    We present comprehensive multiwavelength observations of three gamma-ray bursts (GRBs) with durations of several thousand seconds. We demonstrate that these events are extragalactic transients; in particular, we resolve the long-standing conundrum of the distance of GRB 101225A (the "Christmas-day burst"), finding it to have a redshift z = 0.847 and showing that two apparently similar events (GRB 111209A and GRB 121027A) lie at z = 0.677 and z = 1.773, respectively. The systems show extremely unusual X-ray and optical light curves, very different from classical GRBs, with long-lasting, highly variable X-ray emission and optical light curves that exhibit little correlation with the behavior seen in the X-ray. Their host galaxies are faint, compact, and highly star-forming dwarf galaxies, typical of "blue compact galaxies." We propose that these bursts are the prototypes of a hitherto largely unrecognized population of ultra-long GRBs, which while observationally difficult to detect may be astrophysically relatively common. The long durations may naturally be explained by the engine-driven explosions of stars of much larger radii than normally considered for GRB progenitors, which are thought to have compact Wolf-Rayet progenitor stars. However, we cannot unambiguously identify supernova signatures within their light curves or spectra. We also consider the alternative possibility that they arise from the tidal disruption of stars by massive black holes and conclude that the associated timescales are only consistent with the disruption of compact stars (e. g., white dwarfs) by black holes of relatively low mass (<10(5) M-circle dot).
  • No Thumbnail Available
    Item
    DISCOVERY OF THE BROAD-LINED TYPE Ic SN 2013cq ASSOCIATED WITH THE VERY ENERGETIC GRB 130427A
    (2013) Xu, D.; de Ugarte Postigo, A.; Leloudas, G.; Kruehler, T.; Cano, Z.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Thoene, C. C.; Sanchez-Ramirez, R.; Schulze, S.; Jakobsson, P.; Kaper, L.; Sollerman, J.; Watson, D. J.; Cabrera-Lavers, A.; Cao, C.; Covino, S.; Flores, H.; Geier, S.; Gorosabel, J.; Hu, S. M.; Milvang-Jensen, B.; Sparre, M.; Xin, L. P.; Zhang, T. M.; Zheng, W. K.; Zou, Y. C.
    Long-duration gamma-ray bursts (GRBs) at z < 1 are found in most cases to be accompanied by bright, broadlined Type Ic supernovae (SNe Ic-BL). The highest-energy GRBs are mostly located at higher redshifts, where the associated SNe are hard to detect observationally. Here, we present early and late observations of the optical counterpart of the very energetic GRB 130427A. Despite its moderate redshift, z = 0.3399+/-0.0002, GRB 130427A is at the high end of the GRB energy distribution, with an isotropic-equivalent energy release of E-iso similar to 9.6 x 10(53) erg, more than an order of magnitude more energetic than other GRBs with spectroscopically confirmed SNe. In our dense photometric monitoring, we detect excess flux in the host-subtracted r-band light curve, consistent with that expected from an emerging SN, similar to 0.2 mag fainter than the prototypical SN 1998bw. A spectrum obtained around the time of the SN peak (16.7 days after the GRB) reveals broad undulations typical of SNe Ic-BL, confirming the presence of an SN, designated SN 2013cq. The spectral shape and early peak time are similar to those of the high expansion velocity SN 2010bh associated with GRB 100316D. Our findings demonstrate that high-energy, long-duration GRBs, commonly detected at high redshift, can also be associated with SNe Ic-BL, pointing to a common progenitor mechanism.
  • Loading...
    Thumbnail Image
    Item
    First simultaneous optical/near-infrared imaging of an X-ray selected, high-redshift cluster of galaxies with GROND The galaxy population of XMMU J0338.7+0030 at z=1.1
    (2012) Pierini, D.; Suhada, R.; Fassbender, R.; Nastasi, A.; Boehringer, H.; Salvato, M.; Pratt, G. W.; Lerchster, M.; Rosati, P.; Santos, J. S.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Muehlegger, M.; Quintana, H.; Schwope, A.; Biffi, V.; Chon, G.; Giodini, S.; Koppenhoefer, J.; Verdugo, M.; Ziparo, F.; Afonso, P. M. J.; Clemens, C.; Greiner, J.; Kruehler, T.; Yoldas, A. Kuepcue; Olivares E, F.; Rossi, A.; Yoldas, A.
    Context. The XMM-Newton Distant Cluster Project is a serendipitous survey for clusters of galaxies at redshifts z >= 0.8 based on deep archival XMM-Newton observations. X-ray sources identified as extended are screened against existing optical all-sky surveys for galaxies, in case of candidate high-z clusters followed up with imaging at 4 m-class telescopes and, ultimately, multi-object spectroscopy at 8 m-class telescopes. Low-significance candidate high-z clusters are followed up with the seven-channel imager GROND (Gamma-Ray Burst Optical and Near-Infrared Detector) that is mounted at a 2 m-class telescope. Its unique capability of simultaneous imaging in the g', r', i', z', J, H, Ks bands enables the use of the photometric redshift technique.
  • No Thumbnail Available
    Item
    Four GRB supernovae at redshifts between 0.4 and 0.8
    (2019) Klose, S.; Schmidl, S.; Kann, D. A.; Guelbenzu, A. Nicuesa; Schulze, S.; Greiner, J.; Olivares E, F.; Kruehler, T.; Schady, P.; Afonso, P. M. J.; Filgas, R.; Fynbo, J. P. U.; Rau, A.; Rossi, A.; Takats, K.; Tanga, M.; Updike, A. C.; Varela, K.
    Twenty years ago, GRB 980425/SN 1998bw revealed that long gamma-ray bursts (GRBs) are physically associated with broad-lined type-Ic supernovae (SNe). Since then more than 1000 long GRBs have been localized to high angular precision, but only in similar to 50 cases has the underlying SN component been identified. Using the Gamma-Ray Burst Optical Near-Infrared Detector (GROND) multi-channel imager at ESO/La Silla, during the last ten years we have devoted a substantial amount of observing time to reveal and study SN components in long-GRB afterglows. Here we report on four more GRB SNe (associated with GRBs 071112C, 111228A, 120714B, and 130831A) which were discovered and/or followed-up with GROND and whose redshifts lie between z = 0.4 and 0.8. We study their afterglow light curves, follow the associated SN bumps over several weeks, and characterize their host galaxies. Using SN 1998bw as a template, the derived SN explosion parameters are fully consistent with the corresponding properties of the currently known GRB-SN ensemble, with no evidence for an evolution of their properties as a function of redshift. In two cases (GRB 120714B/SN 2012eb at z = 0.398 and GRB 130831A/SN 2013fu at z = 0.479) additional Very Large Telescope (VLT) spectroscopy of the associated SNe revealed a photospheric expansion velocity at maximum light of about 40 000 and 20 000 km s(-1), respectively. For GRB 120714B, which was an intermediate-luminosity burst, we find additional evidence for a black-body component in the light of the optical transient at early times, similar to what has been detected in some GRB SNe at lower redshifts.
  • Loading...
    Thumbnail Image
    Item
    GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological gamma-ray burst?
    (OXFORD UNIV PRESS, 2015) Cano, Zach; de Ugarte Postigo, A.; Perley, D.; Kruehler, T.; Margutti, R.; Friis, M.; Malesani, D.; Jakobsson, P.; Fynbo, J. P. U.; Gorosabel, J.; Hjorth, J.; Sanchez Ramirez, R.; Schulze, S.; Tanvir, N. R.; Thoene, C. C.; Xu, D.
    We present optical and near-infrared photometry of GRB 140606B (z = 0.384), and optical photometry and spectroscopy of its associated supernova (SN). The results of our modelling indicate that the bolometric properties of the SN (M-Ni = 0.4 +/- 0.2 M-circle dot, M-ej = 5 +/- 2 M-circle dot, and E-K = 2 +/- 1 x 10(52) erg) are fully consistent with the statistical averages determined for other gamma-ray burst (GRB)-SNe. However, in terms of its gamma-ray emission, GRB 140606B is an outlier of the Amati relation, and occupies the same region as low luminosity (ll) and short GRBs. The gamma-ray emission in llGRBs is thought to arise in some or all events from a shock breakout (SBO), rather than from a jet. The measured peak photon energy (E-p approximate to 800 keV) is close to that expected for. -rays created by an SBO (greater than or similar to 1 MeV). Moreover, based on its position in the M-V,M- (p)- L-iso,L-gamma plane and the E-K-Gamma eta plane, GRB 140606B has properties similar to both SBO-GRBs and jetted-GRBs. Additionally, we searched for correlations between the isotropic gamma-ray emission and the bolometric properties of a sample of GRB-SNe, finding that no statistically significant correlation is present. The average kinetic energy of the sample is (E) over bar (K) = 2.1 x 10(52) erg. All of the GRB-SNe in our sample, with the exception of SN 2006aj, are within this range, which has implications for the total energy budget available to power both the relativistic and non-relativistic components in a GRB-SN event.
  • No Thumbnail Available
    Item
    Highly luminous supernovae associated with gamma-ray bursts I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae
    (2019) Kann, D. A.; Schady, P.; Olivares, F. E.; Klose, S.; Rossi, A.; Perley, D. A.; Kruehler, T.; Greiner, J.; Guelbenzu, A. Nicuesa; Elliott, J.; Knust, F.; Filgas, R.; Pian, E.; Mazzali, P.; Fynbo, J. P. U.; Leloudas, G.; Afonso, P. M. J.; Delvaux, C.; Graham, J. F.; Rau, A.; Schmidl, S.; Schulze, S.; Tanga, M.; Updike, A. C.; Varela, K.
    Context. GRB 111209A, one of the longest gamma-ray bursts (GRBs) ever observed, is linked to SN 2011kl, which is the most luminous GRB supernova (SN) detected so far. Several lines of evidence indicate that this GRB-SN is powered by a magnetar central engine.
  • Loading...
    Thumbnail Image
    Item
    Identifying the host galaxy of the short GRB 100628A
    (EDP SCIENCES S A, 2015) Guelbenzu, A. Nicuesa; Klose, S.; Palazzi, E.; Greiner, J.; Michalowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Kruehler, T.; Knust, F.; Masetti, N.; Olivares E, F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.
    We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 in telescope. ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O II] [O III], H alpha and H beta, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the ORB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 x 10(11) L-circle dot this galaxy resembles the probable giant elliptical host of the first well-localized short burst. GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population.
  • No Thumbnail Available
    Item
    LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE
    (2015) Nicholl, M.; Smartt, S. J.; Jerkstrand, A.; Sim, S. A.; Inserra, C.; Anderson, J. P.; Baltay, C.; Benetti, S.; Chambers, K.; Chen, T. -W.; Elias-Rosa, N.; Feindt, U.; Flewelling, H. A.; Fraser, M.; Gal-Yam, A.; Galbany, L.; Huber, M. E.; Kangas, T.; Kankare, E.; Kotak, R.; Kruehler, T.; Maguire, K.; McKinnon, R.; Rabinowitz, D.; Rostami, S.; Schulze, S.; Smith, K. W.; Sullivan, M.; Tonry, J. L.; Valenti, S.; Young, D. R.
    We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within similar to 1 day after explosion show a bright and relatively fast initial peak, lasting for similar to 15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal Ni-56-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of similar to 2 X 10(52) erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.
  • No Thumbnail Available
    Item
    On the nature of hydrogen-rich superluminous supernovae
    (2018) Inserra, C.; Smartt, S. J.; Gall, E. E. E.; Leloudas, G.; Chen, T-W.; Schulze, S.; Jerkstrand, A.; Nicholl, M.; Anderson, J. P.; Arcavi, I.; Benetti, S.; Cartier, R. A.; Childress, M.; Della Valle, M.; Flewelling, H.; Fraser, M.; Gal-Yam, A.; Gutierrez, C. P.; Hosseinzadeh, G.; Howell, D. A.; Huber, M.; Kankare, E.; Kruehler, T.; Magnier, E. A.; Maguire, K.; McCully, C.; Prajs, S.; Primak, N.; Scalzo, R.; Schmidt, B. P.; Smith, M.; Smith, K. W.; Tucker, B. E.; Valenti, S.; Wilman, M.; Young, D. R.; Yuan, F.
    We present two hydrogen-rich superluminous supernovae (SLSNe): SN2103hx and PS 15br. These objects, together with SN2008es, are the only SLSNe showing a distinct, broad H alpha feature during the photospheric phase; also, they show no sign of strong interaction between fast moving ejecta and circumstellar shells in their early spectra. Despite the fact that the peak luminosity of PS 15br is fainter than that of the other two objects, the spectrophotometric evolution is similar to SN2103hx and different from any other supernova in a similar luminosity space. We group all of them as SLSNe II and hence they are distinct from the known class of SLSN IIn. Both transients show a strong, multicomponent H alpha emission after 200 d past maximum, which we interpret as an indication of the interaction of the ejecta with an asymmetric, clumpy circumstellar material. The spectra and photometric evolution of the two objects are similar to Type II supernovae, although they have much higher luminosity and evolve on slower time-scales. This is qualitatively similar to how SLSNe I compare with normal type Ic, in that the former are brighter and evolve more slowly. We apply a magnetar and an interaction semi-analytical code to fit the light curves of our two objects and SN2008es. The overall observational data set would tend to favour the magnetar, or central engine, model as the source of the peak luminosity, although the clear signature of late-time interaction indicates that interaction can play a role in the luminosity evolution of SLSNe II at some phases.
  • No Thumbnail Available
    Item
    Spectroscopy of the short-hard GRB 130603B The host galaxy and environment of a compact object merger
    (2014) Postigo, A. de Ugarte; Thone, C. C.; Rowlinson, A.; Garcia-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sanchez-Ramirez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Kruehler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.
    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-like signature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger.
  • No Thumbnail Available
    Item
    The host galaxy of the short GRB 111117A at z=2.211 Impact on the short GRB redshift distribution and progenitor channels
    (2018) Selsing, J.; Kruehler, T.; Malesani, D.; D'Avanzo, P.; Schulze, S.; Vergani, S. D.; Palmerio, J.; Japelj, J.; Milvang-Jensen, B.; Watson, D.; Jakobsson, P.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Fynbo, J. P. U.; Gomboc, A.; Heintz, K. E.; Kaper, L.; Levan, A. J.; Piranomonte, S.; Pugliese, G.; Sanchez-Ramirez, R.; Sparre, M.; Tanvir, N. R.; Thone, C. C.; Wiersema, K.
    It is notoriously difficult to localize short gamma-ray bursts (sGRBs) and their hosts to measure their redshifts. These measurements, however, are critical for constraining the nature of sGRB progenitors, their redshift distribution, and the r-process element enrichment history of the universe. Here we present spectroscopy of the host galaxy of GRB 111117A and measure its redshift to be z = 2.211. This makes GRB 111117A the most distant high-confidence short duration GRB detected to date. Our spectroscopic redshift supersedes a lower, previously estimated photometric redshift value for this burst. We use the spectroscopic redshift, as well as new imaging data to constrain the nature of the host galaxy and the physical parameters of the GRB. The rest-frame X-ray derived hydrogen column density, for example, is the highest compared to a complete sample of sGRBs and seems to follow the evolution with redshift as traced by the hosts of long GRBs. From the detection of Ly alpha emission in the spectrum, we are able to constrain the escape fraction of Ly alpha in the host. The host lies in the brighter end of the expected sGRB host brightness distribution at z = 2 : 211, and is actively forming stars. Using the observed sGRB host luminosity distribution, we find that between 43% and 71% of all Swift-detected sGRBs have hosts that are too faint at z similar to 2 to allow for a secure redshift determination. This implies that the measured sGRB redshift distribution could be incomplete at high redshift. The high z of GRB 111117A is evidence against a lognormal delay-time model for sGRBs through the predicted redshift distribution of sGRBs, which is very sensitive to high-z sGRBs. From the age of the universe at the time of GRB explosion, an initial neutron star (NS) separation of a(0) < 3.1 R-circle dot is required in the case where the progenitor system is a circular pair of inspiralling NSs. This constraint excludes some of the longest sGRB formation channels for this burst.
  • Loading...
    Thumbnail Image
    Item
    The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented
    (2018) Kann, D. A.; Schady, P.; Olivares, E. F.; Klose, S.; Rossi, A.; Perley, D. A.; Zhang, B.; Kruehler, T.; Greiner, J.; Guelbenzu, A. Nicuesa; Elliott, J.; Knust, F.; Cano, Z.; Filgas, R.; Pian, E.; Mazzali, P.; Fynbo, J. P. U.; Leloudas, G.; Afonso, P. M. J.; Delvaux, C.; Graham, J. F.; Rau, A.; Schmidl, S.; Schulze, S.; Tanga, M.; Updike, A. C.; Varela, K.
  • Loading...
    Thumbnail Image
    Item
    The warm, the excited, and the molecular gas: GRB 121024A shining through its star-forming galaxy
    (OXFORD UNIV PRESS, 2015) Friis, M.; De Cia, A.; Kruehler, T.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P. M.; Watson, D. J.; Malesani, D.; Gorosabel, J.; Starling, R. L. C.; Jakobsson, P.; Varela, K.; Wiersema, K.; Drachmann, A. P.; Trotter, A.; Thoene, C. C.; de Ugarte Postigo, A.; D'Elia, V.; Elliott, J.; Maturi, M.; Goldoni, P.; Greiner, J.; Haislip, J.; Kaper, L.; Knust, F.; LaCluyze, A.; Milvang Jensen, B.; Reichart, D.; Schulze, S.; Sudilovsky, V.; Tanvir, N.; Vergani, S. D.
    We present the first reported case of the simultaneous metallicity determination of a gamma- ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission- line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long- duration Swift GRB 121024A at z = 2.30, we give one of the most complete views of a GRB host/ environment to date. We observe a strong damped Lya absorber (DLA) with a hydrogen column density of log N(H i) = 21.88 +/- 0.10, H-2 absorption in the Lyman- Werner bands (molecular fraction of log(f) approximate to- 1.4; fourth solid detection of molecular hydrogen in a GRB- DLA), the nebular emission lines H alpha, H beta, [OII], [O III] and [N II], as well as metal absorption lines. We find aGRB host galaxy that is highly star forming (SFR similar to 40M circle dot yr(-1)), with a dust- corrected metallicity along the line of sight of [Zn/ H](corr) =- 0.6 +/- 0.2 ([O/H]similar to- 0.3 from emission lines), and a depletion factor [Zn/ Fe] = 0.85 +/- 0.04. The molecular gas is separated by 400 km s(-1) (and 1-3 kpc) from the gas that is photoexcited by the GRB. This implies a fairly massive host, in agreement with the derived stellar mass of log(M*/M-circle dot) = 9.9(-0.3)(+0.2). We dissect the host galaxy by characterizing its molecular component, the excited gas, and the line- emitting star- forming regions. The extinction curve for the line of sight is found to be unusually flat (R-V similar to 15). We discuss the possibility of an anomalous grain size distributions. We furthermore discuss the different metallicity determinations from both absorption and emission lines, which gives consistent results for the line of sight to GRB 121024A.
  • Loading...
    Thumbnail Image
    Item
    VLT/X-Shooter emission-line spectroscopy of 96 gamma-ray-burst-selected galaxies at 0.1 < z < 3.6
    (EDP SCIENCES S A, 2015) Kruehler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang Jensen, B.; Guelbenzu, A. Nicuesa; Palazzi, E.; Pian, E.; Piranomonte, S.; Sanchez Ramirez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.
    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long gamma-ray bursts (GRBs) at 0.1 < z < 3.6, the largest sample of GRB host spectra available to date. Most of our GRBs were detected by Swift and 76% are at 0.5 < z < 2.5 with a median z(med) similar to 1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen, and neon, we measure systemic redshifts, star formation rates (SFR), visual attenuations (A(V)), oxygen abundances (12 + log(O/H)), and emission-line widths (sigma). We study GRB hosts up to z similar to 3.5 and find a strong change in their typical physical properties with redshift. The median SFR of our GRB hosts increases from SFRmed similar to 0.6 M circle dot yr(-1) at z similar to 0.6 up to SFRmed similar to 15 M circle dot yr(-1) at z similar to 2. A higher ratio of [O III]/[O II] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the Baldwin-Phillips-Terlevich diagram. There is weak evidence for a redshift evolution in A(V) and similar to, with the highest values seen at z similar to 1.5 (A(V)) or z similar to 2 (sigma). Oxygen abundances of the galaxies are distributed between 12 + log(O/H) = 7.9 and 12 + log(O/H) = 9.0 with a median 12 + log(O/H)(med) similar to 8.5. The fraction of GRB-selected galaxies with super-solar metallicities is similar to 20% at z < 1 in the adopted metallicity scale. This is significantly less than the fraction of total star formation in similar galaxies, illustrating that GRBs are scarce in high metallicity environments. At z similar to 3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z less than or similar to 0.5 Z circle dot. Together with a high incidence of Z similar to 0.5 Z circle dot galaxies at z similar to 1.5, this indicates that a metallicity dependence at low redshift will not be dominant at z similar to 3. Significant correlations exist between the hosts' physical properties. Oxygen abundance, for example, relates to A(V) (12 + log(O/H) proportional to 0.17 A(V)), line width (12 + log(O/H) proportional to sigma(0.6)), and SFR (12 + log(O/H) proportional to SFR0.2). In the last two cases, the normalization of the relations shift to lower metallicities at z > 2 by similar to 0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback