• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kretschmar, Catalina"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Inhibition of PORCN Blocks Wnt Signaling to Attenuate Progression of Oral Carcinogenesis
    (2024) Pena-Oyarzun, Daniel; Flores, Tania; Torres, Vicente A.; Quest, Andrew F. G.; Lobos-Gonzalez, Lorena; Kretschmar, Catalina; Contreras, Pamela; Maturana-Ramirez, Andrea; Criollo, Alfredo; Reyes, Montserrat
    Purpose: Oral squamous cell carcinoma (OSCC) is commonly preceded by potentially malignant lesions, referred to as oral dysplasia. We recently reported that oral dysplasia is associated with aberrant activation of the Wnt/beta-catenin pathway, due to overexpression of Wnt ligands in a Porcupine (PORCN)-dependent manner. Pharmacologic inhibition of PORCN precludes Wnt secretion and has been proposed as a potential therapeutic approach to treat established cancers. Nevertheless, there are no studies that explore the effects of PORCN inhibition at the different stages of oral carcinogenesis.
  • Loading...
    Thumbnail Image
    Item
    Palmitic acid control of ciliogenesis modulates insulin signaling in hypothalamic neurons through an autophagy-dependent mechanism
    (SPRINGERNATURE, 2022) Avalos, Yenniffer; Paz Hernandez-Caceres, Maria; Lagos, Pablo; Pinto-Nunez, Daniela; Rivera, Patricia; Burgos, Paulina; Diaz-Castro, Francisco; Joy-Immediato, Michelle; Venegas-Zamora, Leslye; Lopez-Gallardo, Erik; Kretschmar, Catalina; Batista-Gonzalez, Ana; Cifuentes-Araneda, Flavia; Toledo-Valenzuela, Lilian; Rodriguez-Pena, Marcelo; Espinoza-Caicedo, Jasson; Perez-Leighton, Claudio; Bertocchi, Cristina; Cerda, Mauricio; Troncoso, Rodrigo; Parra, Valentina; Budini, Mauricio; Burgos, Patricia, V; Criollo, Alfredo; Morselli, Eugenia
    Palmitic acid (PA) is significantly increased in the hypothalamus of mice, when fed chronically with a high-fat diet (HFD). PA impairs insulin signaling in hypothalamic neurons, by a mechanism dependent on autophagy, a process of lysosomal-mediated degradation of cytoplasmic material. In addition, previous work shows a crosstalk between autophagy and the primary cilium (hereafter cilium), an antenna-like structure on the cell surface that acts as a signaling platform for the cell. Ciliopathies, human diseases characterized by cilia dysfunction, manifest, type 2 diabetes, among other features, suggesting a role of the cilium in insulin signaling. Cilium depletion in hypothalamic pro-opiomelanocortin (POMC) neurons triggers obesity and insulin resistance in mice, the same phenotype as mice deficient in autophagy in POMC neurons. Here we investigated the effect of chronic consumption of HFD on cilia; and our results indicate that chronic feeding with HFD reduces the percentage of cilia in hypothalamic POMC neurons. This effect may be due to an increased amount of PA, as treatment with this saturated fatty acid in vitro reduces the percentage of ciliated cells and cilia length in hypothalamic neurons. Importantly, the same effect of cilia depletion was obtained following chemical and genetic inhibition of autophagy, indicating autophagy is required for ciliogenesis. We further demonstrate a role for the cilium in insulin sensitivity, as cilium loss in hypothalamic neuronal cells disrupts insulin signaling and insulin-dependent glucose uptake, an effect that correlates with the ciliary localization of the insulin receptor (IR). Consistently, increased percentage of ciliated hypothalamic neuronal cells promotes insulin signaling, even when cells are exposed to PA. Altogether, our results indicate that, in hypothalamic neurons, impairment of autophagy, either by PA exposure, chemical or genetic manipulation, cause cilia loss that impairs insulin sensitivity.
  • No Thumbnail Available
    Item
    Polycystin-2 Is Required for Starvation- and Rapamycin-Induced Atrophy in Myotubes
    (2019) Kretschmar, Catalina; Pena-Oyarzun, Daniel; Hernando, Cecilia; Hernandez-Moya, Nadia; Molina-Berrios, Alfredo; Paz Hernandez-Caceres, Maria; Lavandero, Sergio; Budini, Mauricio; Morselli, Eugenia; Parra, Valentina; Troncoso, Rodrigo; Criollo, Alfredo
    Muscle atrophy involves a massive catabolism of intracellular components leading to a significant reduction in cellular and tissue volume. In this regard, autophagy, an intracellular mechanism that degrades proteins and organelles, has been implicated with muscle breakdown. Recently, it has shown that polycystin-2 (PC2), a membrane protein that belongs to the transient receptor potential (TRP) family, is required for the maintenance of cellular proteostasis, by regulating autophagy in several cell types. The role of PC2 in the control of atrophy and autophagy in skeletal muscle remains unknown. Here, we show that PC2 is required for the induction of atrophy in C2C12 myotubes caused by nutrient deprivation or rapamycin exposure. Consistently, overexpression of PC2 induces atrophy in C2C12 myotubes as indicated by decreasing of the myogenic proteins myogenin and caveolin-3. In addition, we show that inhibition of mTORC1, by starvation or rapamycin is inhibited in cells when PC2 is silenced. Importantly, even if PC2 regulates mTORC1, our results show that the regulation of atrophy by PC2 is independent of autophagy. This study provides novel evidence regarding the role of PC2 in skeletal muscle cell atrophy.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback