Browsing by Author "Koschikowski, Joachim"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemPVDF Composite Membranes with Hydrophobically-Capped CuONPs for Direct-Contact Membrane Distillation(2021) Saldias, Cesar; Terraza, Claudio A.; Leiva, Angel; Koschikowski, Joachim; Winter, Daniel; Tundidor-Camba, Alain; Martin-Trasanco, RudyWater scarcity is an imminent problem that humanity is beginning to attempt to solve. Among the several technologies that have been developed to mitigate water scarcity, membrane distillation is of particular note. In the present work, CuO nanoparticles capped with 1-octanethiol (CuONPs@CH) or 1H,1H,2H,2H-perfluorodecanethiol (CuONPs@CF) are prepared. The nanoparticles are characterized by FT-IR and TGA methods. Two weight losses are observed in both cases, with the decomposition of the organic fragments beginning at 158 degrees C and 230 degrees C for CuONPs@CF and CuONPs@CH, respectively. Flat sheet PVDF composite membranes containing nanoparticles are prepared by the casting solution method using nanoparticle concentrations that ranged between 2-20% with a non-woven polyester fabric as support. The obtained membranes showed a thickness of 240 +/- 40 mu m. According to water contact angle (87 degrees for CuONPs@CH and 95 degrees for CuONPs@CF, both at 10% w.t) and roughness (12 pixel for CuONPs@CH and 14 pixels for CuONPs@CF, both at 10% w.t) determinations, the hydrophobicity of membranes changed due to a decrease in surface energy, while, for naked CuONPs, the roughness factor represents the main role. Membranes prepared with capped nanoparticles showed similar porosity (60-64%). SEM micrographs show asymmetric porous membranes with a 200-nm surface pore diameter. The largest finger-like pores in the membranes prepared with CuONPs, CuONPs@CH and CuONPs@CF had values of 63 +/- 10 mu m, 32 +/- 8 mu m, and 45 +/- 10 mu m, respectively. These membranes were submitted to a direct contact membrane distillation module and flux values of 1.8, 2.7, and 3.9 kg(m(2)center dot h)(-1) at Delta T = 30 degrees C were obtained for the CuONPs, CuONPs@CH, and CuONPs@CF, respectively. The membranes showed 100% salt rejection during the testing time (240 min).
- ItemSpraying Fluorinated Silicon Oxide Nanoparticles on CuONPs@CF-PVDF Membrane: A Simple Method to Achieve Superhydrophobic Surfaces and High Flux in Direct Contact Membrane Distillation(2022) Lenac, Zivka; Saldias, Cesar; Terraza, Claudio A.; Leiva, Angel; Koschikowski, Joachim; Winter, Daniel; Tundidor-Camba, Alain; Martin-Trasanco, RudyDesalinization of seawater can be achieved by membrane distillation techniques (MD). In MD, the membranes should be resistant to fouling, robust for extended operating time, and preferably provide a superhydrophobic surface. In this work, we report the preparation and characterization of a robust and superhydrophobic polyvinylidene fluoride membrane containing fluoroalkyl-capped CuONPs (CuONPs@CF) in the inner and fluorinated capped silicon oxide nanoparticles (SiO(2)NPs@CF) on its surface. SiO(2)NPs@CF with a mean diameter of 225 +/- 20 nm were prepared by the sol method using 1H,1H,2H,2H-perfluorodecyltriethoxysilane as a capping agent. Surface modification of the membrane was carried out by spraying SiO(2)NPs@CF (5% wt.) dispersed in a mixture of dimethyl formamide (DMF) and ethanol (EtOH) at different DMF/EtOH % v/v ratios (0, 5, 10, 20, and 50). While ethanol dispersed the nanoparticles in the spraying solution, DMF dissolved the PVDF on the surface and retained the sprayed nanoparticles. According to SEM micrographs and water contact angle measurements, the best results were achieved by depositing the nanoparticles at 10% v/v of DMF/EtOH. Under these conditions, a SiO(2)NPs covered surface was observed with a water contact angle of 168.5 degrees. The water contact angle was retained after the sonication of the membrane, indicating that the modification was successfully achieved. The membrane with SiO(2)NPs@CF showed a flux of 14.3 kg(m(2)center dot h)(-1), 3.4 times higher than the unmodified version. The method presented herein avoids the complicated modification procedure offered by chemical step modification and, due to its simplicity, could be scalable to a commercial membrane.