Browsing by Author "Jones, Matias I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemA long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS(2024) Jones, Matias I.; Reinarz, Yared; Brahm, Rafael; Tala Pinto, Marcelo; Eberhardt, Jan; Rojas, Felipe; Triaud, Amaury H. M. J.; Gupta, Arvind F.; Ziegler, Carl; Hobson, Melissa J.; Jordan, Andres; Henning, Thomas; Trifonov, Trifon; Schlecker, Martin; Espinoza, Nestor; Torres-Miranda, Pascal; Sarkis, Paula; Ulmer-Moll, Solene; Lendl, Monika; Uzundag, Murat; Moyano, Maximiliano; Hesse, Katharine; Caldwell, Douglas A.; Shporer, Avi; Lund, Michael B.; Jenkins, Jon M.; Seager, Sara; Winn, Joshua N.; Ricker, George R.; Burke, Christopher J.; Figueira, Pedro; Psaridi, Angelica; Al Moulla, Khaled; Mounzer, Dany; Standing, Matthew R.; Martin, David V.; Dransfield, Georgina; Baycroft, Thomas; Dragomir, Diana; Boyle, Gavin; Suc, Vincent; Mann, Andrew W.; Timmermans, Mathilde; Ducrot, Elsa; Hooton, Matthew J.; Zuniga-Fernandez, Sebastian; Sebastian, Daniel; Gillon, Michael; Queloz, Didier; Carson, Joe; Lissauer, Jack J.We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow-up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant in the transition between the super-Jupiters and brown dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480(-0.0005)(+0.0004) d, M-p = 12.74(-1.01)(+1.01) M-J, R-p = 1.026(-0.067)(+0.065) R-J and e = 0.018(-0.004)(+0.004). In addition, the RV time series revealed a significant trend at the similar to 350 m s(-1) yr(-1) level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949(-0.0003)(+0.0003) d, M-p = 2.340(-0.195)(+0.197) M-J, R-p = 1.030(-0.050)(+0.050) R-J and e = 0.021(-0.015)(+0.024), making this object a new example of a growing population of transiting warm giant planets.
- ItemEvidence of extra mixing in field giants as traced by the lithium and carbon isotope ratio(2023) Aguilera-Gomez, Claudia; Jones, Matias I.; Chaname, JulioContext. Although not predicted by standard stellar evolution, the surface abundance of light elements, such as lithium (Li), carbon, and nitrogen, changes during the red giant branch (RGB) as a result of extra mixing. This is usually associated with thermohaline mixing acting after the RGB bump. Peculiar Li-enriched RGB stars might also be related to either enhanced mixing or pollution from external sources.Aims. We measure the Li abundance and carbon isotopic ratio C-12/C-13 in a sample of 166 field red giants with -0.3 <= [Fe/H] <= 0.2, targeted by the EXPRESS radial velocity program to analyze the effects of extra mixing.Methods. We measured the abundances with spectral synthesis using high-quality spectra. Multiple-epoch observations needed for exoplanet detection were used to decrease the effects of telluric contamination in C-12/C-13 measurements.Results. Due to the prevalence of upper limits, the Li abundance pattern is complicated to interpret, but the comparison between RGB and core He-burning giants shows effects of mixing consistent with thermohaline. The most Li-enriched giant in the sample, classified as a RGB star close to the RGB bump, has low C-12/C-13. Given that the C-12/C-13 should not be affected by planet engulfment, this does not seem to be the source of the high Li. There is a decreasing correlation between mass and C-12/C-13 in the RGB and an increasing correlation in the horizontal branch, which, once again, is consistent with thermohaline mixing. Our data also show a correlation between C-12/C-13 and [Fe/H]. There is no evident impact of binarity either on Li or on C-12/C-13.Conclusions. Our sample shows behavior consistent with additional mixing acting after the RGB bump. The C-12/C-13 adds new clues which can be used to describe extra mixing, and it could well be the best tool to study mixing in giants. Additional measurements of C-12/C-13 in field stars would greatly improve our ability to compare data with models and understand mixing mechanisms.