Browsing by Author "Ibanez-Vega, Jorge"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCellular and molecular regulation of the programmed death-1/programmed death ligand system and its role in multiple sclerosis and other autoimmune diseases(2021) Ibanez-Vega, Jorge; Vilchez, Constanza; Jimenez, Karin; Guevara, Carlos; Burgos, Paula, I; Naves, RodrigoProgrammed Cell Death 1 (PD-1) receptor and its ligands (PD-Ls) are essential to maintain peripheral immune tolerance and to avoid tissue damage. Consequently, altered gene or protein expression of this system of coinhibitory molecules has been involved in the development of cancer and autoimmunity. Substantial progress has been achieved in the study of the PD-1/PD-Ls system in terms of regulatory mechanisms and therapy. However, the role of the PD-1/PD-Ls pathway in neuroinflammation has been less explored despite being a potential target of treatment for neurodegenerative diseases. Multiple Sclerosis (MS) is the most prevalent, chronic, inflammatory, and autoimmune disease of the central nervous system that leads to demyelination and axonal damage in young adults. Recent studies have highlighted the key role of the PD-1/PD-Ls pathway in inducing a neuroprotective response and restraining T cell activation and neurodegeneration in MS. In this review, we outline the molecular and cellular mechanisms regulating gene expression, protein synthesis and traffic of PD-1/PD-Ls as well as relevant processes that control PD-1/PD-Ls engagement in the immunological synapse between antigen-presenting cells and T cells. Also, we highlight the most recent findings regarding the role of the PD-1/PD-Ls pathway in MS and its murine model, experimental autoimmune encephalomyelitis (EAE), including the contribution of PD-1 expressing follicular helper T (TFH) cells in the pathogenesis of these diseases. In addition, we compare and contrast results found in MS and EAE with evidence reported in other autoimmune diseases and their experimental models, and review PD-1/PD-Ls-targeting therapeutic approaches.
- ItemEcm29-Dependent Proteasome Localization Regulates Cytoskeleton Remodeling at the Immune Synapse(2021) Ibanez-Vega, Jorge; Del Valle, Felipe; Saez, Juan Jose; Guzman, Fanny; Diaz, Jheimmy; Soza, Andrea; Yuseff, Maria IsabelThe formation of an immune synapse (IS) enables B cells to capture membrane-tethered antigens, where cortical actin cytoskeleton remodeling regulates cell spreading and depletion of F-actin at the centrosome promotes the recruitment of lysosomes to facilitate antigen extraction. How B cells regulate both pools of actin, remains poorly understood. We report here that decreased F-actin at the centrosome and IS relies on the distribution of the proteasome, regulated by Ecm29. Silencing Ecm29 decreases the proteasome pool associated to the centrosome of B cells and shifts its accumulation to the cell cortex and IS. Accordingly, Ecm29-silenced B cells display increased F-actin at the centrosome, impaired centrosome and lysosome repositioning to the IS and defective antigen extraction and presentation. Ecm29-silenced B cells, which accumulate higher levels of proteasome at the cell cortex, display decreased actin retrograde flow in lamellipodia and enhanced spreading responses. Our findings support a model where B the asymmetric distribution of the proteasome, mediated by Ecm29, coordinates actin dynamics at the centrosome and the IS, promoting lysosome recruitment and cell spreading.
- ItemInterferon-gamma ameliorates experimental autoimmune encephalomyelitis by inducing homeostatic adaptation of microglia(2023) Tichauer, Juan E.; Arellano, Gabriel; Acuna, Eric; Gonzalez, Luis F.; Kannaiyan, Nirmal R.; Murgas, Paola; Panadero-Medianero, Concepcion; Ibanez-Vega, Jorge; Burgos, Paula I.; Loda, Eileah; Miller, Stephen D.; Rossner, Moritz J.; Gebicke-Haerter, Peter J.; Naves, RodrigoCompelling evidence has shown that interferon (IFN)-gamma has dual effects in multiple sclerosis and in its animal model of experimental autoimmune encephalomyelitis (EAE), with results supporting both a pathogenic and beneficial function. However, the mechanisms whereby IFN-gamma may promote neuroprotection in EAE and its effects on central nervous system (CNS)-resident cells have remained an enigma for more than 30 years. In this study, the impact of IFN-gamma at the peak of EAE, its effects on CNS infiltrating myeloid cells (MC) and microglia (MG), and the underlying cellular and molecular mechanisms were investigated. IFN-gamma administration resulted in disease amelioration and attenuation of neuroinflammation associated with significantly lower frequencies of CNS CD11b(+) myeloid cells and less infiltration of inflammatory cells and demyelination. A significant reduction in activated MG and enhanced resting MG was determined by flow cytometry and immunohistrochemistry. Primary MC/MG cultures obtained from the spinal cord of IFN-gamma-treated EAE mice that were ex vivo re-stimulated with a low dose (1 ng/ml) of IFN-gamma and neuroantigen, promoted a significantly higher induction of CD4(+) regulatory T (Treg) cells associated with increased transforming growth factor (TGF)-beta secretion. Additionally, IFN-gamma-treated primary MC/MG cultures produced significantly lower nitrite in response to LPS challenge than control MC/MG. IFN-gamma-treated EAE mice had a significantly higher frequency of CX3CR1(high) MC/MG and expressed lower levels of program death ligand 1 (PD-L1) than PBS-treated mice. Most CX3CR1(high)PD-L1(low)CD11b(+)Ly6G(-) cells expressed MG markers (Tmem119, Sall2, and P2ry12), indicating that they represented an enriched MG subset (CX3CR1(high)PD-L1(low) MG). Amelioration of clinical symptoms and induction of CX3CR1(high)PD-L1(low) MG by IFN-gamma were dependent on STAT-1. RNA-seq analyses revealed that in vivo treatment with IFN-gamma promoted the induction of homeostatic CX3CR1(high)PD-L1(low) MG, upregulating the expression of genes associated with tolerogenic and anti-inflammatory roles and down-regulating pro-inflammatory genes. These analyses highlight the master role that IFN-gamma plays in regulating microglial activity and provide new insights into the cellular and molecular mechanisms involved in the therapeutic activity of IFN-gamma in EAE.