Browsing by Author "Hube Ginestar, Matías Andres"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCharacteristics and displacement capacity of reinforced concrete walls in damaged buildings during 2010 Chile earthquake(2015) Alarcón Olivari, Cristóbal Nicolás; Hube Ginestar, Matías Andres; Junemann Ureta, Rosita; Llera Martin, Juan Carlos de laAbout 2 % of reinforced concrete (RC) buildings taller than nine stories suffered important structural damage during 2010 Chile earthquake. The typical structural configuration of residential buildings is characterized by a large number of RC structural walls which provides high lateral stiffness and strength. The first objective of this paper is to obtain global geometric and design parameters of RC structural walls in damaged buildings and correlate their values with the observed damage. The second objective is to compare the roof displacement capacity with the roof displacement demand in critical walls, and hence, try to explain the observed damage. The wall parameters were obtained from five representative damaged structural wall buildings; these are: wall thickness, aspect ratio, axial load, reinforcement ratios, and the ratio between horizontal reinforcement spacing and the vertical bar diameter. The roof displacement capacity is obtained using a plastic hinge approach, and the ACI 318-08 approach, since both methods are proposed in the current Chilean seismic code. The displacement demand is estimated from ground motions recorded in the vicinity of the buildings. It is found that values of wall parameters correlate well with the observed damage. The structural walls were subjected to relatively high axial loads, and some walls included a large amount of vertical reinforcement to provide the required strength, but had inadequate transverse reinforcement thus compromising ductility. Findings from this research suggest that the plastic hinge approach is inadequate to estimate the roof displacement capacity and lacks correlation with the observed damage. Moreover, the use of the ACI 318-08 approach to estimate the roof displacement capacity is also inadequate, but leads to better predictions of wall displacement capacity. As shown by the results of response history analysis, the failure of walls was triggered by high axial loads rather than flexural deformation.
- ItemEvaluation of seismic indices for identifying vulnerable reinforced concrete wall buildings in Chile(2025) Gálvez Plaza, Hector Andrei; Hube Ginestar, Matías Andres; Jünemann Ureta, RositaPast earthquakes have shown that reinforced concrete (RC) wall buildings are vulnerable to seismic damage. Identifying vulnerable buildings before future events enable the implementation of prevention strategies, such as retrofitting vulnerable structures. Assessing the seismic vulnerability of a large building stock is complex, and a rapid and effective evaluation is necessary to identify vulnerable buildings. Different methods have been proposed to evaluate the seismic vulnerability of buildings, ranging from complex analytical methods to simplified empirical methods that rely on the statistical treatment of observed damage after past earthquakes to calculate seismic indices. However, limited studies have been conducted to relate seismic indices to observed damage for Chilean buildings. The main objective of this research is to evaluate seismic indices to assess the seismic vulnerability of RC wall buildings using empirical data from the 2010 Maule earthquake. A database of 158 undamaged buildings and 30 damaged buildings following the 2010 Maule earthquake is considered. For each building, three capacity-based indices, two demand-based indices, and six demand-to-capacity indices are calculated. The demand-based indices are calculated using both the actual seismic demand and the seismic design demand. The ability of each seismic index to identify undamaged and damaged buildings is quantified using Receiver Operating Characteristic (ROC) analysis. Results suggest that capacity-based indices alone are not adequate to identify damaged buildings, while demand-based and demand-to-capacity based indices are more accurate at identifying damaged buildings. Although demand-based indices using seismic design demand are less accurate than those using the actual seismic demand, they remain practical when detailed seismic data is unavailable.
- ItemModel of seismic design regulations and lateral force coefficients for buildings in South America(2025) González, Daniela; Silva, Vitor; Acevedo, Ana Beatriz; Tarque, Nicola; Lovon, Holger; Santa María, Oyanedel Hernán; Hube Ginestar, Matías Andres; Coronel-Delgado, Gustavo; Celi, CarlosThis study investigates the evolution and current status of seismic design regulations in Argentina, Bolivia, Chile, Colombia, Ecuador, Peru, and Venezuela, using a pre-established methodology previously applied for Europe. It introduces a simplified methodology to estimate the proportion of buildings designed under four seismic code levels: no code, low code, moderate code, and high code. By analysing the progression of seismic design standards across South America, the study determines lateral force coefficients for a typical mid-rise reinforced concrete structure corresponding to each seismic code level. The findings reveal that approximately 20% of the total building stock, and 55% of reinforced concrete buildings, were constructed while regulations with some seismic provisions were followed. This research offers essential tools to enhance seismic risk assessment models and provides a dynamic framework for integrating new data, technological advancements, and local expertise into exposure modelling. Furthermore, it contributes to a global initiative led by the Global Earthquake Model (GEM) Foundation aimed at improving accessibility to information on seismic regulations and seismic hazard design demand maps.
