• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hoffmeister, Dirk"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood
    (2014) Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Duenas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St John, Franz; Glasner, Jeremy; Sabat, Grzegorz; BonDurant, Sandra Splinter; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutierrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kuees, Ursula; Berka, Randy M.; Martinez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel
    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.
  • Loading...
    Thumbnail Image
    Item
    Microbial hotspots in a relict fog-dependent Tillandsia landbeckii dune from the coastal Atacama Desert
    (2024) Jaeschke, Andrea; May, S. Matthias; Hakobyan, Anna; Morchen, Ramona; Bubenzer, Olaf; Bernasconi, Stefano M.; Schefu, Enno; Hoffmeister, Dirk; Latorre, Claudio; Gwozdz, Martina; Rethemeyer, Janet; Knief, Claudia
    The hyperarid Atacama Desert in northern Chile is considered to be one of the most hostile habitats for microbial life. Despite the extreme environmental conditions, isolated patches of vegetation exist in an otherwise barren landscape. Unique dune ecosystems dominated by rootless Tillandsia landbeckii vegetation occur at elevations of about 900-1200 m asl within the coastal mountain range and receive water and nutrients mostly from the Pacific Ocean via fog deposition. The largest dunes can form over thousands of years, and may host diverse and abundant populations of microorganisms, sustained by fog moisture and nutrients via plant litter deposition. Relict dune ecosystems, with no living plants, are also common on this landscape. We investigated the microbial community structure in such a relict and stratified Tillandsia dune, located north of the Rio Loa canyon, to explore links between plant occurrence and past hydroclimatic variations using a multi-proxy approach. Our results indicated multiple phases of dune growth with alternating plant colonization, dieback, and sand accumulation during the past similar to 1300 years. Hydrogen isotope analysis of fossil leaf wax n-alkanes showed a distinct pattern of more humid conditions during the Medieval Climate Anomaly and increasing aridity during the Little Ice Age. We found that microbial abundance and diversity were generally higher in and just beneath core sections with elevated amounts of plant material. Recurrent rewetting events during specific climatic periods in the past may have supported active microbial communities in the sand dune, sustained by plant resources. This is further supported by significant changes in foliar and sedimentary delta N-15 values. Most negative delta N-15 values concurred with higher n-alkane abundances and distinct shifts in microbial community structure, pointing to increased biological nitrogen cycling in the central part of the dune, where niche occupation occurred by nitrifying Thaumarchaeota. In contrast, the upper part of the dune core was characterized by low microbial diversity and abundance. The community was dominated by members of the Bacilli, which may have dispersed via dust during a generally more arid climate. The sand dune thus retains a unique and well-preserved environmental record that reflects concomitant changes in past hydrological (i.e., fog) conditions, plant growth and microbial abundance and diversity during late Holocene climate extremes.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback