• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Herrera Ortiz, Pablo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Métodos DPG para el problema quad-curl
    (2024) Herrera Ortiz, Pablo; Heuer, Norbert; Führer, Thomas; Pontificia Universidad Católica de Chile. Facultad de Matemáticas
    Los problemas relevantes de la magnetohidrodinámica y la dispersión electromagnética utilizan operadores diferenciales de cuarto orden de tipo rotacional, generalmente denominados operadores quad-curl. Su uso requiere métodos de aproximación numérica. En el caso de los operadores quad-curl, la literatura correspondiente es escasa. La discretización de operadores de cuarto orden es difícil debido al requisito de regularidad para las aproximaciones conformes y la presencia de kernels no triviales. Proponemos emplear el método de Petrov-Galerkin discontinuo (método DPG) con funciones de test óptimas. Este es un marco propuesto por Demkowicz y Gopalakrishnan que tiene como objetivo la estabilidad discreta automática de los esquemas de aproximación.El trabajo está dividido en tres partes. La primera parte examina el problema quad-div en dos y tres dimensiones, mostrando su relación con el operador quad-curl $Curl^4$ en el caso 2D. Presentamos el problema como sistemas de primer y segundo orden. Adicionalmente, proporcionamos un método completamente discreto y realizamos un experimento numérico para el caso adaptativo. En la segunda parte, escribimos el operador quad-curl como $-\Curl\Delta\Curl$, formulamos el problema como un sistema de segundo orden y proporcionamos una formulación variacional ultra-débil. Utilizamos los operadores de Fortin del método DPG para el problema de Kirchhoff--Love en 2D para analizar el esquema completamente discreto. Mostramos una aplicación al problema de Stokes en 2D con cargas en $L_2$ y $H^{-1}$. En la tercera parte, estudiamos directamente el operador $\Curl^4$ en 3D como un sistema de segundo orden y proporcionamos una formulación variacional ultra-débil. En este caso, la existencia de un operador de Fortin es un problema abierto.A lo largo de la tesis, empleamos el marco teórico DPG con formulaciones ultra-débiles. La mayor parte de nuestro análisis se centra en estudiar los operadores de traza, los espacios de traza y los saltos. Estos son claves para caracterizar la regularidad, la conformidad y las condiciones de contorno. Desarrollamos operadores de Fortin los cuales son necesarios para la estabilidad de las formulaciones mixtas. Para todos los casos definimos y analizamos los operadores de traza y espacios necesarios, demostramos el buen planteamiento de las formulaciones variacionales y su discretización, y derivamos estimaciones de error a priori.También examinamos técnicas para la inclusión de condiciones de contorno no homogéneas.Proporcionamos experimentos numéricos para todos los problemas y formulaciones. Estos confirman las propiedades de convergencia esperadas.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback