Browsing by Author "Hernández-García, Lorena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemAlert Classification for the ALeRCE Broker System: The Anomaly Detector(IOP Publishing Ltd, 2023) Pérez-Carrasco, Manuel; Cabrera-Vives, Guillermo; Hernández-García, Lorena; Forster, F.; Sanchez-Saez, Paula; Muñoz Arancibia, Alejandra M.; Arredondo, Javier; Astorga, Nicolas; Bauer, Franz Erik; Bayo, Amelia; Catelan, Marcio; Dastidar, Raya; Estevez, P. A.; Lira, Paulina; Pignata, GiulianoAstronomical broker systems, such as Automatic Learning for the Rapid Classification of Events (ALeRCE), are currently analyzing hundreds of thousands of alerts per night, opening up an opportunity to automatically detect anomalous unknown sources. In this work, we present the ALeRCE anomaly detector, composed of three outlier detection algorithms that aim to find transient, periodic, and stochastic anomalous sources within the Zwicky Transient Facility data stream. Our experimental framework consists of cross-validating six anomaly detection algorithms for each of these three classes using the ALeRCE light-curve features. Following the ALeRCE taxonomy, we consider four transient subclasses, five stochastic subclasses, and six periodic subclasses. We evaluate each algorithm by considering each subclass as the anomaly class. For transient and periodic sources the best performance is obtained by a modified version of the deep support vector data description neural network, while for stochastic sources the best results are obtained by calculating the reconstruction error of an autoencoder neural network. Including a visual inspection step for the 10 most promising candidates for each of the 15 ALeRCE subclasses, we detect 31 bogus candidates (i.e., those with photometry or processing issues) and seven potential astrophysical outliers that require follow-up observations for further analysis.
- ItemDELIGHT: Deep Learning Identification of Galaxy Hosts of Transients using Multiresolution Images(2022) Förster, Francisco; Muñoz Arancibia, Alejandra M.; Reyes-Jainaga, Ignacio; Gagliano, Alexander; Britt, Dylan; Cuellar-Carrillo, Sara; Figueroa-Tapia, Felipe; Polzin, Ava; Yousef, Yara; Arredondo, Javier; Rodríguez-Mancini, Diego; Correa-Orellana, Javier; Bayo, Amelia; Bauer, Franz E.; Catelan, Márcio; Cabrera-Vives, Guillermo; Dastidar, Raya; Estévez, Pablo A.; Pignata, Giuliano; Hernández-García, Lorena; Huijse, Pablo; Reyes, Esteban; Sánchez-Sáez, Paula; Ramírez, Mauricio; Grandón, Daniela; Pineda-García, Jonathan; Chabour-Barra, Francisca; Silva-Farfán, JavierWe present DELIGHT, or Deep Learning Identification of Galaxy Hosts of Transients, a new algorithm designed to automatically and in real time identify the host galaxies of extragalactic transients. The proposed algorithm receives as input compact, multiresolution images centered at the position of a transient candidate and outputs two-dimensional offset vectors that connect the transient with the center of its predicted host. The multiresolution input consists of a set of images with the same number of pixels, but with progressively larger pixel sizes and fields of view. A sample of 16,791 galaxies visually identified by the Automatic Learning for the Rapid Classification of Events broker team was used to train a convolutional neural network regression model. We show that this method is able to correctly identify both relatively large (10″ < r < 60″) and small (r ≤ 10″) apparent size host galaxies using much less information (32 kB) than with a large, single-resolution image (920 kB). The proposed method has fewer catastrophic errors in recovering the position and is more complete and has less contamination (<0.86%) recovering the crossmatched redshift than other state-of-the-art methods. The more efficient representation provided by multiresolution input images could allow for the identification of transient host galaxies in real time, if adopted in alert streams from new generation of large -etendue telescopes such as the Vera C. Rubin Observatory....