Browsing by Author "Helly, J. C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHalo merger tree comparison: impact on galaxy formation models(2022) Gomez, Jonathan S.; Padilla, N. D.; Helly, J. C.; Lacey, C. G.; Baugh, C. M.; Lagos, C. D. P.We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the galform semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree builders hbt, rockstar, subfind, and VELOCI raptor differ in their definitions of halo mass, on whether only spatial or phase-space information is used, and in how they distinguish satellite and main haloes; all of these features have some impact on the model galaxies, even after the trees are post-processed and homogenized by galform. The stellar mass function is insensitive to the halo and merger tree finder adopted. However, we find that the number of central and satellite galaxies in galform does depend slightly on the halo finder/tree builder. The number of galaxies without resolved subhaloes depends strongly on the tree builder, with VELOCIraptor, a phase-space finder, showing the largest population of such galaxies. The distributions of stellar masses, cold and hot gas masses, and star formation rates agree well between different halo finders/tree builders. However, because VELOCIraptor has more early progenitor haloes, with these trees galform produces slightly higher star formation rate densities at high redshift, smaller galaxy sizes, and larger stellar masses for the spheroid component. Since in all cases these differences are small we conclude that, when all of the trees are processed so that the main progenitor mass increases monotonically, the predicted galform galaxy populations are stable and consistent for these four halo finders/tree builders.
- ItemHERSCHEL-ATLAS: A BINARY HyLIRG PINPOINTING A CLUSTER OF STARBURSTING PROTOELLIPTICALS(2013) Ivison, R. J.; Swinbank, A. M.; Smail, Ian; Harris, A. I.; Bussmann, R. S.; Cooray, A.; Cox, P.; Fu, H.; Kovacs, A.; Krips, M.; Narayanan, D.; Negrello, M.; Neri, R.; Penarrubia, J.; Richard, J.; Riechers, D. A.; Rowlands, K.; Staguhn, J. G.; Targett, T. A.; Amber, S.; Baker, A. J.; Bourne, N.; Bertoldi, F.; Bremer, M.; Calanog, J. A.; Clements, D. L.; Dannerbauer, H.; Dariush, A.; De Zotti, G.; Dunne, L.; Eales, S. A.; Farrah, D.; Fleuren, S.; Franceschini, A.; Geach, J. E.; George, R. D.; Helly, J. C.; Hopwood, R.; Ibar, E.; Jarvis, M. J.; Kneib, J. -P.; Maddox, S.; Omont, A.; Scott, D.; Serjeant, S.; Smith, M. W. L.; Thompson, M. A.; Valiante, E.; Valtchanov, I.; Vieira, J.; van der Werf, P.Panchromatic observations of the best candidate hyperluminous infrared galaxies from the widest Herschel extragalactic imaging survey have led to the discovery of at least four intrinsically luminous z = 2.41 galaxies across an approximate to 100 kpc region-a cluster of starbursting protoellipticals. Via subarcsecond interferometric imaging we have measured accurate gas and star formation surface densities. The two brightest galaxies span similar to 3 kpc FWHM in submillimeter/radio continuum and CO J = 4-3, and double that in CO J = 1-0. The broad CO line is due partly to the multitude of constituent galaxies and partly to large rotational velocities in two counter-rotating gas disks-a scenario predicted to lead to the most intense starbursts, which will therefore come in pairs. The disks have M-dyn of several x 10(11) M-circle dot, and gas fractions of similar to 40%. Velocity dispersions are modest so the disks are unstable, potentially on scales commensurate with their radii: these galaxies are undergoing extreme bursts of star formation, not confined to their nuclei, at close to the Eddington limit. Their specific star formation rates place them greater than or similar to 5x above the main sequence, which supposedly comprises large gas disks like these. Their high star formation efficiencies are difficult to reconcile with a simple volumetric star formation law. N-body and dark matter simulations suggest that this system is the progenitor of a B(inary)-type approximate to 10(14.6)-M-circle dot cluster.