Browsing by Author "Haertel, Steffen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemB Cells Adapt Their Nuclear Morphology to Organize the Immune Synapse and Facilitate Antigen Extraction(2022) Ulloa, Romina; Corrales, Oreste; Cabrera-Reyes, Fernanda; Jara-Wilde, Jorge; Saez, Juan Jose; Rivas, Christopher; Lagos, Jonathan; Haertel, Steffen; Quiroga, Clara; Yuseff, Maria-Isabel; Diaz-Munoz, JheimmyUpon interaction with immobilized antigens, B cells form an immune synapse where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits, and lysosomes accumulate. Silencing the nuclear envelope proteins Nesprin-1 and Sun-1 impairs nuclear reorientation towards the synapse and leads to defects in actin organization. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.
- ItemVolumePeeler: a novel FIJI plugin for geometric tissue peeling to improve visualization and quantification of 3D image stacks(BMC, 2023) Gatica, Marilyn; Navarro, Carlos F. F.; Lavado, Alejandro; Reig, German; Pulgar, Eduardo; Llanos, Paula; Haertel, Steffen; Ravasio, Andrea; Bertocchi, Cristina; Concha, Miguel L. L.; Cerda, MauricioMotivation Quantitative descriptions of multi-cellular structures from optical microscopy imaging are prime to understand the variety of three-dimensional (3D) shapes in living organisms. Experimental models of vertebrates, invertebrates and plants, such as zebrafish, killifish, Drosophila or Marchantia, mainly comprise multilayer tissues, and even if microscopes can reach the needed depth, their geometry hinders the selection and subsequent analysis of the optical volumes of interest. Computational tools to "peel" tissues by removing specific layers and reducing 3D volume into planar images, can critically improve visualization and analysis.Results We developed VolumePeeler, a versatile FIJI plugin for virtual 3D "peeling" of image stacks. The plugin implements spherical and spline surface projections. We applied VolumePeeler to perform peeling in 3D images of spherical embryos, as well as non-spherical tissue layers. The produced images improve the 3D volume visualization and enable analysis and quantification of geometrically challenging microscopy datasets.