• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gutierrez, Claudia P."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    A novel optimal transport-based approach for interpolating spectral time series
    (2024) Ramirez, Mauricio; Pignata, Giuliano; Forster, Francisco; Gonzalez-Gaitan, Santiago; Gutierrez, Claudia P.; Ayala, Bastian; Cabrera-Vives, Guillermo; Catelan, Marcio; Arancibia, Alejandra M. Munoz; Pineda-Garcia, Jonathan
    Context. The Vera C. Rubin Observatory is set to discover 1 million supernovae (SNe) within its first operational year. Given the impracticality of spectroscopic classification at such scales, it is mandatory to develop a reliable photometric classification framework. Aims. This paper introduces a novel method for creating spectral time series that can be used not only to generate synthetic light curves for photometric classification, but also in applications such as K-corrections and bolometric corrections. This approach is particularly valuable in the era of large astronomical surveys, where it can significantly enhance the analysis and understanding of an increasing number of SNe, even in the absence of extensive spectroscopic data. Methods. By employing interpolations based on optimal transport theory, starting from a spectroscopic sequence, we derive weighted average spectra with high cadence. The weights incorporate an uncertainty factor for penalizing interpolations between spectra that show significant epoch differences and lead to a poor match between the synthetic and observed photometry. Results. Our analysis reveals that even with a phase difference of up to 40 days between pairs of spectra, optical transport can generate interpolated spectral time series that closely resemble the original ones. Synthetic photometry extracted from these spectral time series aligns well with observed photometry. The best results are achieved in the V band, with relative residuals of less than 10% for 87% and 84% of the data for type Ia and II, respectively. For the B, g, R, and r bands, the relative residuals are between 65% and 87% within the previously mentioned 10% threshold for both classes. The worse results correspond to the i and I bands, where, in the case of SN Ia, the values drop to 53% and 42%, respectively. Conclusions. We introduce a new method for constructing spectral time series for individual SNe starting from a sparse spectroscopic sequence, and demonstrate its capability to produce reliable light curves that can be used for photometric classification.
  • Loading...
    Thumbnail Image
    Item
    CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE
    (IOP PUBLISHING LTD, 2014) Anderson, Joseph P.; Gonzalez Gaitan, Santiago; Hamuy, Mario; Gutierrez, Claudia P.; Stritzinger, Maximilian D.; Olivares, Felipe E.; Phillips, Mark M.; Schulze, Steve; Antezana, Roberto; Bolt, Luis; Campillay, Abdo; Castellon, Sergio; Contreras, Carlos; de Jaeger, Thomas; Folatelli, Gaston; Foerster, Francisco; Freedman, Wendy L.; Gonzalez, Luis; Hsiao, Eric; Krzeminski, Wojtek; Krisciunas, Kevin; Maza, Jose; McCarthy, Patrick; Morrell, Nidia I.; Persson, Sven E.; Roth, Miguel; Salgado, Francisco; Suntzeff, Nicholas B.; Thomas Osip, Joanna
    We present an analysis of the diversity of V-band light-curves of hydrogen-rich type II supernovae. Analyzing a sample of 116 supernovae, several magnitude measurements are defined, together with decline rates at different epochs, and time durations of different phases. It is found that magnitudes measured at maximum light correlate more strongly with decline rates than those measured at other epochs: brighter supernovae at maximum generally have faster declining light-curves at all epochs. We find a relation between the decline rate during the "plateau" phase and peak magnitudes, which has a dispersion of 0.56 mag, offering the prospect of using type II supernovae as purely photometric distance indicators. Our analysis suggests that the type II population spans a continuum from low-luminosity events which have flat light-curves during the "plateau" stage, through to the brightest events which decline much faster. A large range in optically thick phase durations is observed, implying a range in progenitor envelope masses at the epoch of explosion. During the radioactive tails, we find many supernovae with faster declining light-curves than expected from full trapping of radioactive emission, implying low mass ejecta. It is suggested that the main driver of light-curve diversity is the extent of hydrogen envelopes retained before explosion. Finally, a new classification scheme is introduced where hydrogen-rich events are typed as simply "SN II" with an "s(2)" value giving the decline rate during the "plateau" phase, indicating its morphological type.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback