Browsing by Author "Grandi, P."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemDiscovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at z=1.7: star formation promoted by large-scale AGN feedback?(2019) Gilli, R.; Mignoli, M.; Peca, A.; Nanni, R.; Prandoni, I.; Liuzzo, E.; D'Amato, Q.; Brusa, M.; Calura, F.; Caminha, G. B.; Chiaberge, M.; Comastri, A.; Cucciati, O.; Cusano, F.; Grandi, P.; Decarli, R.; Lanzuisi, G.; Mannucci, F.; Pinna, E.; Tozzi, P.; Vanzella, E.; Vignali, C.; Vito, F.; Balmaverde, B.; Citro, A.; Cappelluti, N.; Zamorani, G.; Norman, C.We report the discovery of a galaxy overdensity around a Compton-thick Fanaroff-Riley type II (FRII) radio galaxy at z = 1:7 in the deep multiband survey around the z = 6.3 quasi-stellar object (QSO) SDSS J1030 +0524. Based on a 6 h VLT/MUSE and on a 4 h LBT/LUCI observation, we identify at least eight galaxy members in this structure with spectroscopic redshift z = 1 .687 1 .699, including the FRII galaxy at z = 1.699. Most members are distributed within 400 kpc from the FRII core. Nonetheless, the whole structure is likely much more extended, as one of the members was serendipitously found at similar to 800 kpc projected separation. The classic radio structure of the FRII itself extends for similar to 600 kpc across the sky. Most of the identified overdensity members are blue, compact galaxies that are actively forming stars at rates of similar to 8-60 M-circle dot yr(-1). For the brightest of them, a half-light radius of 2 .2 similar to 0 .8 kpc at 8000A rest-frame was determined based on adaptive optics-assisted observations with LBT/SOUL in the Ks band. We do not observe any strong galaxy morphological segregation or concentration around the FRII core. This suggests that the structure is far from being virialized and likely constitutes the progenitor of a local massive galaxy group or cluster caught in its main assembly phase. Based on a 500 ks Chandra ACIS-I observation, we found that the FRII nucleus hosts a luminous QSO (L2-10 keV = 1 .3 similar to 10(44) erg s(-1), intrinsic and rest-frame) that is obscured by Compton-thick absorption (N-H = 1.5 +/- 0 .6 x 10(24) cm(-2)). Under standard bolometric corrections, the total measured radiative power (L-rad similar to 4 x 10(45) erg s(-1)) is similar to the jet kinetic power that we estimated from radio observations at 150MHz (P-kin = 6.3 x 10(45) erg s(-1)), in agreement with what is observed in powerful jetted AGN. Our Chandra observation is the deepest so far for a distant FRII within a galaxy overdensity. It revealed significant di ffuse X-ray emission within the region that is covered by the overdensity. In particular, X-ray emission extending for similar to 240 kpc is found around the eastern lobe of the FRII. Four out of the six MUSE star-forming galaxies in the overdensity are distributed in an arc-like shape at the edge of this di ffuse X-ray emission. These objects are concentrated within 200 kpc in the plane of the sky and within 450 kpc in radial separation. Three of them are even more concentrated and fall within 60 kpc in both transverse and radial distance. The probability of observing four out of the six z = 1.7 sources by chance at the edge of the di ffuse emission is negligible. In addition, these four galaxies have the highest specific star formation rates of the MUSE galaxies in the overdensity and lie above the main sequence of field galaxies of equal stellar mass at z = 1.7. We propose that the di ffuse X-rays originate from an expanding bubble of gas that is shock heated by the FRII jet, and that star formation is promoted by the compression of the cold interstellar medium of the galaxies around the bubble, which may be remarkable evidence of positive AGN feedback on cosmological scales.
- ItemSensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation(2021) Abdalla, H.; Abe, H.; Acero, F.; Acharyya, A.; Adam, R.; Agudo, I; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Batista, R. Alves; Amati, L.; Amato, E.; Ambrosi, G.; Anguner, E. O.; Araudo, A.; Armstrong, T.; Arqueros, F.; Arrabito, L.; Asano, K.; Ascasibar, Y.; Ashley, M.; Backes, M.; Balazs, C.; Balbo, M.; Balmaverde, B.; Baquero Larriva, A.; Martins, V. Barbosa; Barkov, M.; Baroncelli, L.; de Almeida, U. Barres; Barrio, J. A.; Batista, P-, I; Becerra Gonzalez, J.; Becherini, Y.; Beck, G.; Tjus, J. Becker; Belmont, R.; Benbow, W.; Bernardini, E.; Berti, A.; Berton, M.; Bertucci, B.; Beshley, V; Bi, B.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Bocchino, F.; Boisson, C.; Bolmont, J.; Bonanno, G.; Arbeletche, L. Bonneau; Bonnoli, G.; Bordas, P.; Bottacini, E.; Bottcher, M.; Bozhilov, V; Bregeon, J.; Brill, A.; Brown, A. M.; Bruno, P.; Bruno, A.; Bulgarelli, A.; Burton, M.; Buscemi, M.; Caccianiga, A.; Cameron, R.; Capasso, M.; Caprai, M.; Caproni, A.; Capuzzo-Dolcetta, R.; Caraveo, P.; Carosi, R.; Carosi, A.; Casanova, S.; Cascone, E.; Cauz, D.; Cerny, K.; Cerruti, M.; Chadwick, P.; Chaty, S.; Chen, A.; Chernyakova, M.; Chiaro, G.; Chiavassa, A.; Chytka, L.; Conforti, V; Conte, F.; Contreras, J. L.; Coronado-Blazquez, J.; Cortina, J.; Costa, A.; Costantini, H.; Covino, S.; Cristofari, P.; Cuevas, O.; D'Ammando, F.; Daniel, M. K.; Davies, J.; Dazzi, F.; De Angelis, A.; de Lavergne, M. de Bony; De Caprio, V; dos Anjos, R. de Cassia; Dal Pino, E. M. de Gouveia; De Lotto, B.; De Martino, D.; de Naurois, M.; Wilhelmi, E. de Ona; De Palma, F.; de Souza, V; Delgado, C.; Della Ceca, R.; della Volpe, D.; Depaoli, D.; Di Girolamo, T.; Di Pierro, F.; Diaz, C.; Diaz-Bahamondes, C.; Diebold, S.; Djannati-Atai, A.; Dmytriiev, A.; Dominguez, A.; Donini, A.; Dorner, D.; Doro, M.; Dournaux, J.; Dwarkadas, V. V.; Ebr, J.; Eckner, C.; Einecke, S.; Ekoume, T. R. N.; Elsaesser, D.; Emery, G.; Evoli, C.; Fairbairn, M.; Falceta-Goncalves, D.; Fegan, S.; Feng, Q.; Ferrand, G.; Fiandrini, E.; Fiasson, A.; Fioretti, V; Foffano, L.; Fonseca, M., V; Font, L.; Fontaine, G.; Franco, F. J.; Freixas Coromina, L.; Fukami, S.; Fukazawa, Y.; Fukui, Y.; Gaggero, D.; Galanti, G.; Gammaldi, V; Garcia, E.; Garczarczyk, M.; Gascon, D.; Gaug, M.; Gent, A.; Ghalumyan, A.; Ghirlanda, G.; Gianotti, F.; Giarrusso, M.; Giavitto, G.; Giglietto, N.; Giordano, F.; Glicenstein, J.; Goldoni, P.; Gonzalez, J. M.; Gourgouliatos, K.; Grabarczyk, T.; Grandi, P.; Granot, J.; Grasso, D.; Green, J.; Grube, J.; Gueta, O.; Gunji, S.; Halim, A.; Harvey, M.; Collado, T. Hassan; Hayashi, K.; Heller, M.; Cadena, S. Hernandez; Hervet, O.; Hinton, J.; Hiroshima, N.; Hnatyk, B.; Hnatyk, R.; Hoffmann, D.; Hofmann, W.; Holder, J.; Horan, D.; Horandel, J.; Horvath, P.; Hovatta, T.; Hrabovsky, M.; Hrupec, D.; Hughes, G.; Hutten, M.; Iarlori, M.; Inada, T.; Inoue, S.; Insolia, A.; Ionica, M.; Iori, M.; Jacquemont, M.; Jamrozy, M.; Janecek, P.; Jimenez Martinez, I; Jin, W.; Jung-Richardt, I; Jurysek, J.; Kaaret, P.; Karas, V; Karkar, S.; Kawanaka, N.; Kerszberg, D.; Khelifi, B.; Kissmann, R.; Knodlseder, J.; Kobayashi, Y.; Kohri, K.; Komin, N.; Kong, A.; Kosack, K.; Kubo, H.; La Palombara, N.; Lamanna, G.; Lang, R. G.; Lapington, J.; Laporte, P.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.; Leone, F.; Leto, G.; Leuschner, F.; Lindfors, E.; Lloyd, S.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, A.; Lopez, M.; Lopez-Coto, R.; Loporchio, S.; Lucarelli, F.; Luque-Escamilla, P. L.; Lyard, E.; Maggio, C.; Majczyna, A.; Makariev, M.; Mallamaci, M.; Mandat, D.; Maneva, G.; Manganaro, M.; Manico, G.; Marcowith, A.; Marculewicz, M.; Markoff, S.; Marquez, P.; Marti, J.; Martinez, O.; Martinez, M.; Martinez, G.; Martinez-Huerta, H.; Maurin, G.; Mazin, D.; Mbarubucyeye, J. D.; Miranda, D. Medina; Meyer, M.; Micanovic, S.; Miener, T.; Minev, M.; Miranda, J. M.; Mitchell, A.; Mizuno, T.; Mode, B.; Moderski, R.; Mohrmann, L.; Molina, E.; Montaruli, T.; Moralejo, A.; Morales Merino, J.; Morcuende-Parrilla, D.; Morselli, A.; Mukherjee, R.; Mundell, C.; Murach, T.; Muraishi, H.; Nagai, A.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nievas, M.; Nikolajuk, M.; Nishijima, K.; Noda, K.; Nosek, D.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Oka, T.; Ong, R. A.; Orienti, M.; Orito, R.; Orlandini, M.; Orlando, E.; Osborne, J. P.; Ostrowski, M.; Oya, I; Pagliaro, A.; Palatka, M.; Paneque, D.; Pantaleo, F. R.; Paredes, J. M.; Parmiggiani, N.; Patricelli, B.; Pavletic, L.; Pe'er, A.; Pech, M.; Pecimotika, M.; Peresano, M.; Persic, M.; Petruk, O.; Pfrang, K.; Piatteli, P.; Pietropaolo, E.; Pillera, R.; Pilszyk, B.; Pimentel, D.; Pintore, F.; Pita, S.; Pohl, M.; Poireau, V; Polo, M.; Prado, R. R.; Prast, J.; Principe, G.; Produit, N.; Prokoph, H.; Prouza, M.; Przybilski, H.; Pueschel, E.; Puehlhofer, G.; Pumo, M. L.; Punch, M.; Queiroz, F.; Quirrenbach, A.; Rando, R.; Razzaque, S.; Rebert, E.; Recchia, S.; Reichherzer, P.; Reimer, O.; Reimer, A.; Renier, Y.; Reposeur, T.; Rhode, W.; Ribeiro, D.; Ribo, M.; Richtler, T.; Rico, J.; Rieger, F.; Rizi, V; Rodriguez, J.; Fernandez, G. Rodriguez; Ramirez, J. C. Rodriguez; Rodriguez Vazquez, J. J.; Romano, P.; Romeo, G.; Roncadelli, M.; Rosado, J.; de Leon, A. Rosales; Rowell, G.; Rudak, B.; Rujopakarn, W.; Russo, F.; Sadeh, I; Saha, L.; Saito, T.; Greus, F. Salesa; Sanchez, D.; Sanchez-Conde, M.; Sangiorgi, P.; Sano, H.; Santander, M.; Santos, E. M.; Sanuy, A.; Sarkar, S.; Saturni, F. G.; Sawangwit, U.; Scherer, A.; Schleicher, B.; Schovanek, P.; Schussler, F.; Schwanke, U.; Sciacca, E.; Scuderi, S.; Arroyo, M. Seglar; Sergijenko, O.; Servillat, M.; Seweryn, K.; Shalchi, A.; Sharma, P.; Shellard, R. C.; Siejkowski, H.; Sinha, A.; Sliusar, V; Slowikowska, A.; Sokolenko, A.; Sol, H.; Specovius, A.; Spencer, S.; Spiga, D.; Stamerra, A.; Starling, R.; Stolarczyk, T.; Straumann, U.; Striskovic, J.; Suda, Y.; Tagliaferri, G.; Takahashi, H.; Takahashi, M.; Tavecchio, F.; Taylor, L.; Tejedor, L. A.; Temnikov, P.; Terrier, R.; Terzic, T.; Testa, V; Tian, W.; Tibaldo, L.; Tonev, D.; Torres, D. F.; Torresi, E.; Tosti, L.; Tothill, N.; Tovmassian, G.; Travnicek, P.; Truzzi, S.; Tuossenel, F.; Umana, G.; Vacula, M.; Vagelli, V.; Valentino, M.; Vallage, B.; Vallania, P.; van Eldik, C.; Varner, G. S.; Vassiliev, V.; Vazquez Acosta, M.; Vecchi, M.; Veh, J.; Vercellone, S.; Vergani, S.; Verguilov, V.; Vettolani, G. P.; Viana, A.; Vigorito, C. F.; Vitale, V.; Vorobiov, S.; Vovk, I; Vuillaume, T.; Wagner, S. J.; Walter, R.; Watson, J.; White, M.; White, R.; Wiemann, R.; Wierzcholska, A.; Will, M.; Williams, D. A.; Wischnewski, R.; Wolter, A.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoshikoshi, T.; Zacharias, M.; Zaharijas, G.; Zaric, D.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A. A.; Zech, A.; Zechlin, H.; Zhdanov, V., I; Zivec, M.The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
- ItemThe MURALES survey : III. Completing the MUSE observations of 37 3C low- z radio galaxies(2021) Balmaverde, B.; Capetti, A.; Marconi, A.; Venturi, Giacomo; Chiaberge, M.; Baldi, R. D.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E. T.; Miley, G.; O'Dea, C.; Sparks, W.; Torresi, E.; Tremblay, G.
- ItemThe MURALES survey II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results(2019) Balmaverde, B.; Capetti, A.; Marconi, A.; Venturi, Giacomo; Chiaberge, M.; Baldi, R.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E.; Miley, G.; O'Dea, C.; Sparks, W.; Torresi, E.; Tremblay, G.
- ItemThe MURALES survey IV. Searching for nuclear outflows in 3C radio galaxies at z < 0.3 with MUSE observations(2021) Speranza, G.; Balmaverde, B.; Capetti, A.; Massaro, F.; Tremblay, G.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R. D.; Baum, S.; Grandi, P.; Meyer, E. T.; O'Dea, C.; Sparks, W.; Terrazas, B. A.; Torresi, E.We analyze VLT/MUSE observations of 37 radio galaxies from the Third Cambridge catalogue (3C) with redshift < 0.3 searching for nuclear outflows of ionized gas. These observations are part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey), whose main goal is to explore the feedback process in the most powerful radio-loud AGN. We applied a nonparametric analysis to the [O III] lambda 5007 emission line, whose asymmetries and high-velocity wings reveal signatures of outflows. We find evidence of nuclear outflows in 21 sources, with velocities between similar to 400 and 1000 km s(-1), outflowing masses of similar to 10(5) - 10(7) M-circle dot, and a kinetic energy in the range similar to 10(53) - 10(56) erg. In addition, evidence for extended outflows is found in the 2D gas velocity maps of 13 sources of the subclasses of high-excitation (HEG) and broad-line (BLO) radio galaxies, with sizes between 0.4 and 20 kpc. We estimate a mass outflow rate in the range 0.4-30 M-circle dot yr(-1) and an energy deposition rate of (E)over dot(kin) similar to 10(42) - 10(45) erg s(-1). Comparing the jet power, the nuclear luminosity of the active galactic nucleus, and the outflow kinetic energy rate, we find that outflows of HEGs and BLOs are likely radiatively powered, while jets likely only play a dominant role in galaxies with low excitation. The low loading factors we measured suggest that these outflows are driven by momentum and not by energy. Based on the gas masses, velocities, and energetics involved, we conclude that the observed ionized outflows have a limited effect on the gas content or the star formation in the host. In order to obtain a complete view of the feedback process, observations exploring the complex multiphase structure of outflows are required.
- ItemThe MURALES survey V. Jet-induced star formation in 3C 277.3 (Coma A)(2022) Capetti, A.; Balmaverde, B.; Tadhunter, C.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R. D.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E. T.; Miley, G.; O'Dea, C.; Sparks, W.; Torresi, E.; Tremblay, G.We present observations obtained with the VLT/MUSE optical integral field spectrograph of the radio source 3C 277.3, located at a redshift of 0.085 and associated with the galaxy Coma A. An emission line region fully enshrouds the double-lobed radio source, which is similar to 60 kpc x 90 kpc in size. Based on the emission line ratios, we identified five compact knots in which the gas ionization is powered by young stars located as far as similar to 60 kpc from the host. The emission line filaments surrounding the radio emission are compatible with ionization from fast shocks (with a velocity of 350-500 km s(-1)), but a contribution from star formation occurring at the edges of the radio source is likely. Coma A might be a unique example in the local Universe in which the expanding outflow triggers star formation throughout the whole radio source.