• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gonzalez-Teuber, Marcia"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Climate change-related warming-induced shifts in leaf chemical traits favor nutrition of the specialist herbivore Battus polydamas archidamas
    (2023) Gonzalez-Teuber, Marcia; Palma-Onetto, Valeria; Aguirre, Carolina; Ibanez, Alfredo J.; Mithoefer, Axel
    One of the major impacts of climate change is increasing global temperatures. Because warming is expected to affect plant morphological and chemical traits, it may therefore also influence plant interactions with other trophic levels, including herbivores. Here, we simulated a climate warming scenario of +2.7 degrees C in the field using open-top chambers and assessed the effects of warming on plant performance (growth, leaf area, and chlorophyll), leaf nutrients (nitrogen and carbon), and primary (amino acids and carbohydrates) and secondary (toxic aristolochic acids) metabolites in the plant Aristolochia chilensis. We performed untargeted metabolomics analyses for estimating general changes in foliar metabolites between ambient control and warming-treated plants. Bioassays were additionally conducted to evaluate how changes in host plant chemistry affected growth and nutritional parameters in first-instar larvae of the specialist lepidopteran herbivore Battus polydamas archidamas. We found that warming did not significantly affect plant performance, but did result in significant changes in leaf nutrients, and primary and secondary metabolites, although in opposite directions. While primary metabolites (specifically, nitrogen-containing compounds) decreased in response to treatment, aristolochic acids increased. Untargeted metabolomics analyses showed that, of a total of 824 features, 50 were significantly different between ambient control and warming-treated plants; some of these were identified by MS/MS spectra as amino acids. Larvae feeding on warming-treated plants, showed significantly enhanced growth, food conversion efficiency, and lipid concentration. Our study contributes to current understanding of climate change impacts on trophic interactions, showing that projected temperature increases lead to changes in the resistance phenotype of the host plant, favoring nutrition and growth of a unique specialist herbivore.
  • No Thumbnail Available
    Item
    Damage and shade enhance climbing and promote associational resistance in a climbing plant
    (2008) Gonzalez-Teuber, Marcia; Gianoli, Ernesto
    1. Associational resistance occurs when one plant species gains protection from its consumers by association with a defended species. In semi-arid ecosystems of Chile, the perennial herb Convolvulus chilensis (Convolvulaceae) suffers heavy herbivory by small mammals when growing prostrate but plants seem to be protected when they are climbing onto cacti or thorny shrubs (nurse species).
  • No Thumbnail Available
    Item
    Mode of action, chemistry and defensive efficacy of the osmeterium in the caterpillar Battus polydamas archidamas
    (2023) Palma-Onetto, Valeria; Bergmann, Jan; Gonzalez-Teuber, Marcia
    Chemical secretions are one of the main defensive mechanisms in insects. The osmeterium is a unique organ in larvae of Papilionidae (Lepidoptera), which is everted upon disturbance, secreting odoriferous volatiles. Here, using larvae of the specialized butterfly Battus polydamas archidamas (Papilionidae: Troidini), we aimed to understand the mode of action of the osmeterium, the chemical composition and origin of the secretion, as well as its defensive efficiency against a natural predator. We described osmeterium's morphology, ultramorphology, structure, ultrastructure, and chemistry. Additionally, behavioral assays of the osmeterial secretion against a predator were developed. We showed that the osmeterium is composed of tubular arms (made up by epidermal cells) and of two ellipsoid glands, which possess a secretory function. The eversion and retraction of the osmeterium are dependent on the internal pressure generated by the hemolymph, and by longitudinal muscles that connect the abdomen with the apex of the osmeterium. Germacrene A was the main compound present in the secretion. Minor monoterpenes (sabinene and ss-pinene) and sesquiterpenes ((E)-beta-caryophyllene, selina-3,7(11)-diene, and other some unidentified compounds) were also detected. Only sesquiterpenes (with the exception of (E)-beta-caryophyllene) are likely to be synthesized in the osmeterium-associated glands. Furthermore, the osmeterial secretion proved to deter predatory ants. Our results suggest that the osmeterium, besides serving as an aposematic warning for enemies, is an efficient chemical defense, with its own synthesis of irritant volatiles.
  • No Thumbnail Available
    Item
    Root symbiotic fungi improve nitrogen transfer and morpho-physiological performance in Chenopodium quinoa
    (2024) Alquichire-Rojas, Shirley; Escobar, Elizabeth; Bascunan-Godoy, Luisa; Gonzalez-Teuber, Marcia
    Root-associated fungal endophytes may facilitate nitrogen (N) absorption in plants, leading to benefits in photosynthesis and growth. Here, we investigated whether endophytic insect pathogenic fungi (EIPF) are capable of transferring soil N to the crop species Chenopodium quinoa. We evaluated nutrient uptake, carbon allocation, and morpho-physiological performance in C. quinoa in symbiosis with two different EIPF (Beauveria and Metarhizium) under contrasting soil N supply. A controlled experiment was conducted using two plant groups: (1) plants subjected to low N level (5 mM urea) and (2) plants subjected to high N level (15 mM urea). Plants from each group were then inoculated with different EIPF strains, either Beauveria (EIPF1+), Metarhizium (EIPF2+) or without fungus (EIPF-). Differences in N and C content, amino acids, proteins, soluble sugars, starch, glutamine synthetase, glutamate dehydrogenase, and physiological (photosynthesis, stomatal conductance, transpiration), and morphological performance between plant groups under each treatment were examined. We found that both Beauveria and Metarhizium translocated N from the soil to the roots of C. quinoa, with positive effects on photosynthesis and plant growth. These effects, however, were differentially affected by fungal strain as well as by N level. Additionally, an improvement in root C and sugar content was observed in presence of EIPF, suggesting translocation of carbohydrates from leaves to roots. Whereas both strains were equally effective in N transfer to roots, Beauveria seemed to exert less demand in C. quinoa for photosynthesis-derived carbohydrates compared to Metarhizium. Our study revealed positive effects of EIPF on N transfer and morpho-physiological performance in crops, highlighting the potential of these fungi as an alternative to chemical fertilizers in agriculture systems.
  • No Thumbnail Available
    Item
    Trade-off between plant resistance and tolerance to herbivory: Mechanical defenses outweigh chemical defenses
    (2023) Salgado-Luarte, Cristian; Gonzalez-Teuber, Marcia; Madriaza, Karina; Gianoli, Ernesto
    Plant resistance includes mechanical and chemical defenses that reduce herbivory, whereas plant tolerance reduces the fitness impact of herbivory. Because defenses are costly and investing in both resistance and tolerance may be superfluous, trade-offs among them are expected. In forest ecosystems, the mechanical strengthening of leaves is linked both to shade adaptation and antiherbivore defenses, but it also compromises resource uptake, therefore limiting regrowth following damage, suggesting a trade-off between mechanical defenses and tolerance. We tested for the resistance-tolerance trade-off across 11 common tree species in a temperate rainforest and explored mechanistic explanations by measuring chemical and mechanical defenses. Herbivory damage was negatively associated with leaf toughness and fiber content, whereas there was no significant relationship between herbivory and secondary metabolites (flavonols, gallic acid, tannins, and terpenoids). We detected a resistance-tolerance trade-off, as expected. We found a negative relationship between mechanical defenses and tolerance, estimated as the survival ratio between experimentally damaged and undamaged seedlings. Tolerance and secondary metabolites showed no significant association. Results suggest that selective forces other than herbivory acting on defensive traits can favor a resistance-tolerance trade-off. Therefore, plant adaptation to contrasting light environments may contribute to the evolution of resistance-tolerance trade-offs.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback