Browsing by Author "Gonzalez, Alex"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBiochemical and Genomic Characterization of the Cypermethrin-Degrading and Biosurfactant-Producing Bacterial Strains Isolated from Marine Sediments of the Chilean Northern Patagonia(2020) Aguila-Torres, Patricia; Maldonado, Jonathan; Gaete, Alexis; Figueroa, Jaime; Gonzalez, Alex; Miranda, Richard; Gonzalez-Stegmaier, Roxana; Martin, Carolina; Gonzalez, MauricioPesticides cause severe environmental damage to marine ecosystems. In the last ten years, cypermethrin has been extensively used as an antiparasitic pesticide in the salmon farming industry located in Northern Patagonia. The objective of this study was the biochemical and genomic characterization of cypermethrin-degrading and biosurfactant-producing bacterial strains isolated from cypermethrin-contaminated marine sediment samples collected in southern Chile (MS). Eleven strains were isolated by cypermethrin enrichment culture techniques and were identified by 16S rDNA gene sequencing analyses. The highest growth rate on cypermethrin was observed in four isolates (MS13, MS15a, MS16, and MS19) that also exhibited high levels of biosurfactant production. Genome sequence analyses of these isolates revealed the presence of genes encoding components of bacterial secondary metabolism, and the enzymes esterase, pyrethroid hydrolase, and laccase, which have been associated with different biodegradation pathways of cypermethrin. These novel cypermethrin-degrading and biosurfactant-producing bacterial isolates have a biotechnological potential for biodegradation of cypermethrin-contaminated marine sediments, and their genomes contribute to the understanding of microbial lifestyles in these extreme environments.
- ItemConformational Changes of Poly(Maleic Anhydride-alt-styrene) Modified with Amino Acids in an Aqueous Medium and Their Effect on Cytocompatibility and Hemolytic Response(2023) Maine, Arianne; Tamayo, Laura; Leiva, Angel; Gonzalez, Alex; Rios, Hernan E.; Rojas-Romo, Carlos; Jara, Paul; Araya-Duran, Ingrid; Gonzalez-Nilo, Fernando; Yazdani-Pedram, Mehrdad; Santana, Paula; Leal, Matias; Gonzalez, Nicolas; Briones, Ximena; Villalobos, Valeria; Urzua, MarcelaThe conformational changes of poly-(maleic anhydride-alt-styrene) (PSMA) modified with different amino acids (PSMA-Aa) were studied in an aqueous medium as a function of ionic strength and pH. The specific viscosity of PSMA-Aa decreased with increasing salt concentration due to a more compact conformation. There was a decrease in surface tension with increasing concentrations of the modified polyelectrolyte having a greater effect for the PSMA modified with l-phenylalanine at pH 7.0, demonstrating a greater surface-active character. The conformational changes were also confirmed by molecular dynamics studies, indicating that PSMA-Aa exhibits a compact structure at pH 4.0 and a more extended structure at pH 7.0. On the other hand, the conformational changes of PSMA-Aa were related to its biological response, where the higher surface-active character of the PSMA modified with l-phenylalanine correlates very well with the higher hemolytic activity observed in red blood cells, in which the surface-active capacity supports lytic potency in erythrocytes. The cytocompatibility assays indicated that there were no significant cytotoxic effects of the PSMA-Aa. Additionally, in solvent-accessible surface area studies, it was shown that the carboxylate groups of the PSMA modified with l-phenylalanine are more exposed to the solvent at pH 7.0 and high salt concentrations, which correlates with lower fluorescence intensity, reflecting a loss of mitochondrial membrane potential. It is concluded that the study of the conformational changes in PE modified with amino acids is essential for their use as biomaterials and relevant to understanding the possible effects of PE modified with amino acids in biological systems.