Browsing by Author "Gomez, Roberto S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemHaem oxygenase 1 expression is altered in monocytes from patients with systemic lupus erythematosus(WILEY, 2012) Herrada, Andres A.; Llanos, Carolina; Mackern Oberti, Juan P.; Carreno, Leandro J.; Henriquez, Carla; Gomez, Roberto S.; Gutierrez, Miguel A.; Anegon, Ignacio; Jacobelli, Sergio H.; Kalergis, Alexis M.Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple functional alterations affecting immune cells, such as B cells, T cells, dendritic cells (DCs) and monocytes. During SLE, the immunogenicity of monocytes and DCs is significantly up-regulated, promoting the activation of self-reactive T cells. Accordingly, it is important to understand the contribution of these cells to the pathogenesis of SLE and the mechanisms responsible for their altered functionality during disease. One of the key enzymes that control monocyte and DC function is haem oxygenase-1 (HO-1), which catalyses the degradation of the haem group into biliverdin, carbon monoxide and free iron. These products possess immunosuppressive and anti-inflammatory capacities. The main goal of this work was to determine HO-1 expression in monocytes and DCs from patients with SLE and healthy controls. Hence, peripheral blood mononuclear cells were obtained from 43 patients with SLE and 30 healthy controls. CD14+ monocytes and CD4+ T cells were sorted by FACS and HO-1 expression was measured by RT-PCR. In addition, HO-1 protein expression was determined by FACS. HO-1 levels in monocytes were significantly reduced in patients with SLE compared with healthy controls. These results were confirmed by flow cytometry. No differences were observed in other cell types, such as DCs or CD4+ T cells, although decreased MHC-II levels were observed in DCs from patients with SLE. In conclusion, we found a significant decrease in HO-1 expression, specifically in monocytes from patients with SLE, suggesting that an imbalance of monocyte function could be partly the result of a decrease in HO-1 expression.
- ItemImmunization with a Recombinant Bacillus Calmette-Guerin Strain Confers Protective Th1 Immunity against the Human Metapneumovirus(2014) Palavecino, Christian E.; Cespedes, Pablo F.; Gomez, Roberto S.; Kalergis, Alexis M.; Bueno, Susan M.Along with the human respiratory syncytial virus (hRSV), the human metapneumovirus (hMPV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, owing to an inefficient immunological memory, hMPV infection provides limited immune protection against reinfection. Furthermore, hMPV can induce an inadequate Th2 type immune response that causes severe lung inflammation, leading to airway obstruction. Similar to hRSV, it is likely that an effective clearance of hMPV would require a balanced Th1 type immunity by the host, involving the activation of IFN-gamma-secreting T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guerin (BCG), which has been used in newborns for many decades and in several countries as a tuberculosis vaccine. We have previously shown that immunization with BCG strains expressing hRSV Ags can induce an efficient immune response that protects against this virus. In this study, we show that immunization with rBCG strains expressing the phosphoprotein from hMPV also can induce protective Th1 immunity. Mice immunized with rBCG were protected against weight loss, airway inflammation, and viral replication in the lungs after hMPV infection. Our rBCG vaccine also induced the activation of hMPV-specific T cells producing IFN-gamma and IL-2, which could protect from hMPV infection when transferred to recipient mice. These data strongly support the notion that rBCG induces protective Th1 immunity and could be considered as an efficient vaccine against hMPV.