Browsing by Author "Garcia-Huidobro, M. Roberto"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemIndividual variation in heat tolerance and metabolism in marine Antarctic organisms(2024) Varas, Oscar; Molina, Andres N.; Garcia-Huidobro, M. Roberto; Aldana, Marcela; Rezende, Enrico L.; Carter, Mauricio J.; Galban-Malagon, Cristobal; Pulgar, Jose M.Climate change is one of the main concerns to Antarctic biodiversity. Since temperature plays a crucial role in various biological traits, it is key to understand how warming may affect organisms specialized to live in the cold habitats. Although heat tolerance of several polar species is known, little emphasis has been given to individual variation and its relationship with other biological traits such as metabolic performance. In this study, we investigated the association between thermal sensitivity in metabolism (Q10) and heat tolerance (z) in six Antarctic marine organisms, including two fish species (Harpagifer antarcticus and Notothenia coriiceps), three crustaceans (Bovallia gigantea, Glyptonotus antarcticus, and Paraceradocus miersi), and one mollusk (Trophon nucelliformis). For this, we measured routine metabolic rates (RMR, mg O2/h) followed by heat tolerance measurements to reconstruct dose-response curves employing sublethal assays or thermal-collapse time (TCT) curves. Analyses reveal a negative relationship between the intercept and the slope of the temperature tolerance curves (CTmax and z values, respectively) against Q10, but only when T. nucelliformis was included in the generalized linear model. Therefore Q10 may be a good predictor of heat tolerance, but it is not true for chordate or arthropod species studied. Additionally, CTmax and z values exhibited a positive relationship consistent with previous studies. This study represents the first example of temperature tolerance curves quantified on an individual basis, and the analyses provide some evidence that thermal sensitivity in metabolism and heat tolerance are correlated. In future studies, it will be crucial to determine whether this relationship is robust and how it may impact the response of different lineages to accelerated warming.
- ItemMorphological, physiological and behavioral responses of an intertidal snail, Acanthina monodon (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems(2022) Duarte, Cristian; Jahnsen-Guzman, Nicole; Quijon, Pedro A.; Manriquez, Patricio H.; Lardies, Marco A.; Fernandez, Carolina; Reyes, Miguel; Zapata, Javier; Garcia-Huidobro, M. Roberto; Lagos, Nelson A.Ocean acidification (OA) is expected to rise towards the end of the 21st century altering the life history traits in marine organisms. Upwelling systems will not escape OA, but unlike other areas of the ocean, cooling effects are expected to intensify in these systems. Regardless, studies evaluating the combined effects of OA and cooling remain scarce. We addressed this gap using a mesocosm system, where we exposed juveniles of the intertidal muricid snail Acanthina monodon to current and projected pCO(2) (500 vs. 1500 ppm) and temperature (15 vs. 10 degrees C) from the southeast Pacific upwelling system. After 9 weeks of experimental exposure to those conditions, we conducted three estimations of growth (wet weight, shell length and shell peristomal length), in addition to measuring calcification, metabolic and feeding rates and the ability of these organisms to return to the normal upright position after being overturned (self-righting). Growth, feeding and calcification rates increased in projected cooling conditions (10 degrees C) but were unaffected by pCO(2) or the interaction between pCO(2) and temperature. Instead, metabolic rates were driven by pCO(2), but a significant interaction with temperature suggests that in cooler conditions, metabolic rates will increase when associated with high pCO(2) levels. Snail self-righting times were not affected across treatments. These results suggest that colder temperatures projected for this area would drive this species growth, feeding and calcification, and consequently, some of its population biology and productivity. However, the snails may need to compensate for the increase in metabolic rates under the effects of ocean acidification. Although A. monodon ability to adjust to individual or combined stressors will likely account for some of the changes described here, our results point to a complex dynamic to take place in intertidal habitats associated with upwelling systems.
- ItemUpper thermal limits and risk of mortality of coastal Antarctic ectotherms(2023) Carter, Mauricio J.; Garcia-Huidobro, M. Roberto; Aldana, Marcela; Rezende, Enrico L.; Bozinovic, Francisco; Galban-Malagon, Cristobal; Pulgar, Jose M.Antarctic marine animals face one of the most extreme thermal environments, characterized by a stable and narrow range of low seawater temperatures. At the same time, the Antarctic marine ecosystems are threatened by accelerated global warming. Determining the upper thermal limits (CTmax) is crucial to project the persistence and distribution areas of the Antarctic marine species. Using thermal death time curves (TDT), we estimated CTmax at different temporal scales from 1 minute to daily and seasonal, the predict vulnerability to the current thermal variation and two potential heatwave scenarios. Our results revealed that CTmax at 1 min are far from the temperature present in the marine intertidal area where our study species, showing Echinoderm species higher CTmax than the Chordata and Arthropods species. Simulations indicated that seasonal thermal variation from the intertidal zone contributed to basal mortality, which increased after considering moderate scenarios of heatwaves (+2 degrees C) in the Shetland Archipelago intertidal zone. Our finding highlighted the relevance of including exposure time explicitly on the CTmax estimates, which deliver closer and more realistic parameters according to the species that may be experiencing in the field.