• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Garcia, Griselda"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Band edges positions prediction of the of Ag nanocluster-decorated titania surfaces and their relationship to NO and NO2 interaction from first-principles calculations
    (2023) Morgade, Cecilia I. N.; Schvval, Ana B.; Garcia, Griselda; Cabeza, Gabriela F.
    Metal nanoclusters deposited on oxides have been widely used in photocatalysis playing an important role in the design of model catalysts with applications in heterogeneous catalysis. In particular, we are interested in the potential activity of these cluster-supported systems for the removal of nitrogen oxides either by possible catalytic reduction and/or by their adsorption. In this work, using first-principles methods, we evaluate the main characteristics of Agn (n = 1-4) nanoclusters isolated and deposited on anatase TiO2(101) and rutile TiO2(110) surfaces. Our results indicate that they are preferably adsorbed on rutile surface. The different formation energy at each surface can be explained using a Bader charge analysis. Particularly for Ag4 the lowest formation energy is obtained for tetrahedral geometry while the isolated Ag4 geometry is planar. Small silver deposits placed superficially on titania surfaces modify its electronic structures and improve the conduction band edges positions for possible NO reduction. Band edges positions with respect to the vacuum potential have been studied. The comparison of the conduction band minimum with the reduction potentials of NO/N2O and N2O/N2 shows that they are higher, being Ag3 on rutile and Ag1, Ag2 and Ag4P on anatase better for NO reduction. To complete the analysis, the calculation of work function, energy gap, ionization energy and electron affinity are relevant since they allow the location of semiconductor band edges at point of zero charge. Finally, the adsorption of nitrogen oxides is studied where the NO2 adsorption is favored over NO.
  • No Thumbnail Available
    Item
    Experimental and theoretical study of synthesis and properties of Cu2O/ TiO2 heterojunction for photoelectrochemical purposes
    (2023) Matamala-Troncoso, Felipe; Saez-Navarrete, Cesar; Mejia-Lopez, Jose; Garcia, Griselda; Rebolledo-Oyarce, Jose; Nguyen, Cuong Ky; MacFarlane, Douglas R.; Isaacs, Mauricio
    The Cu2O/TiO2 heterojunction is an attractive surface for its optoelectronic properties for developing catalysts, cells, and solar devices. However, the mechanisms involved in synthesizing an electrode using the Cu2O/TiO2 heterojunction can affect the surface properties and the surface/electrolyte interactions. In this work, we studied the formation mechanism of the Cu2O/TiO2 heterojunction by electrochemical deposition (ECD) of Cu2O mol-ecules on TiO2 nanoparticles previously deposited on a fluorine-doped thin oxide coated glass substrate (FTO). The photoelectrochemical properties of the Cu2O/TiO2/FTO electrode were characterized by XRD, FE-SEM, TEM, EDX, UV-vis diffuse reflectance spectroscopy (DRS), Raman spectroscopy, and electrochemical methods. Theoretical methods such as ab-initio density functional theory calculations and molecular dynamics simulations were used to understand the experimental results. The analysis carried out by theoretical methods allowed us to identify the initial steps of the formation mechanism of Cu2O molecules on TiO2 nanoparticles. Theoretical calculations demonstrated that forming a Cu2O nanowire-like network on the TiO2 nanoparticle matrix favors the charge transfer at the electrolyte/semiconductor interface, promoting the behavior of the electrode as a cathode. Finally, the Cu2O/TiO2/FTO electrode synthesized was used to perform the reduction photoelectrocatalyzed of nitrate to ammonia under illumination with a Xe-Hg arc lamp and applying-0.5 V bias potential (vs Ag/AgCl sat.) to evaluate the performance of the electrode as a cathode.
  • No Thumbnail Available
    Item
    Photophysics of a single quantum emitter based on vanadium phthalocyanine molecules
    (2024) Escalante, Richard A.; Athpal, Mohan C.; Ruiz-Tagle, Catalina; Lvarado, Vicente H.; Pinto, Felipe; Martinez, Luis J.; Gence, Loik; Garcia, Griselda; Gonzalez, Iyan A.; Maze, Jeronimo R.
    Single quantum emitters play a fundamental role in the development of quantum technologies such as quantum repeaters, and quantum information processing. Isolating individual molecules with stable optical emission is an essential step for these applications, especially for those molecules that present large coherence times at room temperature. Among them, vanadium-oxide phthalocyanine (VOPc) molecules stand out as promising candidates due to the large coherence times of their ground state electronic spin, which are on the order of microseconds when measured in the ensemble. However, the optical properties of such VOPc molecules at the single emitter level have not yet been reported. Here we show that single VOPc molecules with stable optical properties at room temperature can be isolated. We find that the optical response of the molecule under laser illumination of different polarizations agrees well with a system having pyramidal C4vsymmetry. 4 v symmetry. Furthermore, we provide theoretical calculations that support our experimental findings and provide insight into the role of phonons and the internal electronic structure of the molecule. These results demonstrate that this single paramagnetic molecule can function as a single quantum emitter while displaying optical stability under ambient conditions to have their intrinsic properties investigated.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback