• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "García-Melián, J"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Boundary blow-up solutions to elliptic systems of competitive type
    (2004) García-Melián, J; Rossi, JD
    We consider the elliptic system Deltau = u(p)v(q), Deltav = u(r)v(s) in Ohm, where p, s > 1, q, r > 0, and Ohm subset of R-N is a smooth bounded domain, subject to different types of Dirichlet boundary conditions: (F) u = lambda, v = mu, (I) u = v = +infinity and (SF) u = +infinity, v = mu on partial derivativeOhm, where lambda, mu > 0. Under several hypotheses on the parameters p, q, r, s, we show existence and nonexistence of positive solutions, uniqueness and nonuniqueness. We further provide the exact asymptotic behaviour of the solutions and their normal derivatives near partial derivativeOhm. Some more general related problems are also studied. (C) 2004 Published by Elsevier Inc.
  • No Thumbnail Available
    Item
    On an elliptic problem with boundary blow-up and a singular weight
    (2003) Chuaqui, M; Cortázar, C; Elgueta, M; Flores, C; Letelier, R; García-Melián, J
    In this work we consider the non-autonomous problem Deltau = a(x)u(m) in the unit ball B subset of R-N, with the boundary condition u\(partial derivativeB) = +infinity, and m > 0. Assuming that a is a continuous radial function with a(x) similar to C-0 dist(x, partial derivativeB)(-gamma) as dist(x, partial derivativeB) --> 0, for some C-0 > 0, gamma > 0, we completely determine the issues of existence, multiplicity and behaviour near the boundary for radial positive solutions, in terms of the values of m and gamma. The case 0 < m less than or equal to 1, as well as estimates for solutions to the linear problem m = 1, are a significant part of our results.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback