• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gallerani, S."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An X-ray fading, UV brightening QSO at z ≈ 6
    (2022) Vito, F.; Mignoli, M.; Gilli, R.; Brandt, W. N.; Shemmer, O.; Bauer, F. E.; Bisogni, S.; Luo, B.; Marchesi, S.; Nanni, R.; Zamorani, G.; Comastri, A.; Cusano, F.; Gallerani, S.; Vignali, C.; Lanzuisi, G.
    Explaining the existence of super massive black holes (SMBHs) with M-BH greater than or similar to 10(8) M-circle dot at z greater than or similar to 6 is a persistent challenge to modern astrophysics. Multiwavelength observations of z greater than or similar to 6 quasi-stellar objects (QSOs) reveal that, on average, their accretion physics is similar to that of their counterparts at lower redshift. However, QSOs showing properties that deviate from the general behavior can provide useful insights into the physical processes responsible for the rapid growth of SMBHs in the early universe. We present X-ray (XMM-Newton, 100 ks) follow-up observations of a z approximate to 6 QSO, J1641+3755, which was found to be remarkably X-ray bright in a 2018 Chandra dataset. J1641+3755 is not detected in the 2021 XMM-Newton observation, implying that its X-ray flux decreased by a factor greater than or similar to 7 on a notably short timescale (i.e., approximate to 115 rest-frame days), making it the z > 4 QSO with the largest variability amplitude. We also obtained rest-frame ultraviolet (UV) spectroscopic and photometric data with the Large Binocular Telescope (LBT). Surprisingly, comparing our LBT photometry with archival data, we found that J1641+3755 became consistently brighter in the rest-frame UV band from 2003 to 2016, while no strong variation occurred from 2016 to 2021. Its rest-frame UV spectrum is consistent with the average spectrum of high-redshift QSOs. Multiple narrow absorption features are present, and several of them can be associated with an intervening system at z = 5 :67. Several physical causes can explain the variability properties of J1641+3755, including intrinsic variations of the accretion rate, a small-scale obscuration event, gravitational lensing due to an intervening object, and an unrelated X-ray transient in a foreground galaxy in 2018. Accounting for all of the z > 6 QSOs with multiple X-ray observations separated by more that ten rest-frame days, we found an enhancement of strongly (i.e., by a factor >3) X-ray variable objects compared to QSOs at later cosmic times. This finding may be related to the physics of fast accretion in high-redshift QSOs.
  • No Thumbnail Available
    Item
    Chandra and Magellan/FIRE follow-up observations of PSO167-13: An X-ray weak QSO at z=6.515
    (2021) Vito, F.; Brandt, W. N.; Ricci, F.; Congiu, E.; Connor, T.; Banados, E.; Bauer, F. E.; Gilli, R.; Luo, B.; Mazzucchelli, C.; Mignoli, M.; Shemmer, O.; Vignali, C.; Calura, F.; Comastri, A.; Decarli, R.; Gallerani, S.; Nanni, R.; Brusa, M.; Cappelluti, N.; Civano, F.; Zamorani, G.
    Context. The discovery of hundreds of quasi-stellar objects (QSOs) in the first gigayear of the Universe powered by already grown supermassive black holes (SMBHs) challenges our knowledge of SMBH formation. In particular, investigations of z>6 QSOs that present notable properties can provide unique information on the physics of fast SMBH growth in the early Universe.Aims. We present the results of follow-up observations of the z=6.515 radio-quiet QSO PSO167-13, which is interacting with a close companion galaxy. The PSO167-13 system has recently been proposed to host the first heavily obscured X-ray source at high redshift. The goals of these new observations are to confirm the existence of the X-ray source and to investigate the rest-frame UV properties of the QSO.Methods. We observed the PSO167-13 system with Chandra/ACIS-S (177 ks) and obtained new spectroscopic observations (7.2 h) with Magellan/FIRE.Results. No significant X-ray emission is detected from the PSO167-13 system, suggesting that the obscured X-ray source previously tentatively detected was either due to a strong background fluctuation or is highly variable. The upper limit (90% confidence level) on the X-ray emission of PSO167-13 (L2-10 keV<8.3x10(43) erg s(-1)) is the lowest available for a z>6 QSO. The ratio between the X-ray and UV luminosity of alpha (ox)<-1.95 makes PSO167-13 a strong outlier from the (ox)-L-UV and L-X-L-bol relations. In particular, its X-ray emission is more than six times weaker than the expectation based on its UV luminosity. The new Magellan/FIRE spectrum of PSO167-13 is strongly affected by unfavorable sky conditions, but the tentatively detected C IV and Mg II emission lines appear strongly blueshifted.Conclusions. The most plausible explanations for the X-ray weakness of PSO167-13 are intrinsic weakness or small-scale absorption by Compton-thick material. The possible strong blueshift of its emission lines hints at the presence of nuclear winds, which could be related to its X-ray weakness.
  • Loading...
    Thumbnail Image
    Item
    The interstellar medium of dwarf galaxies : new insights from Machine Learning analysis of emission-line spectra
    (2019) Ucci, G.; Ferrara, A.; Gallerani, S.; Pallottini, A.; Cresci, G.; Kehrig, C.; Hunt, L. K.; Vilchez, J. M.; Vanzi, Leonardo

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback