Browsing by Author "Fritz, Elsa"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCharacterization of a Novel Drosophila SERT Mutant: Insights on the Contribution of the Serotonin Neural System to Behaviors(2017) Hidalgo, Sergio; Molina-Mateo, Daniela; Escobedo, Pia; Zarate, Rafaella V.; Fritz, Elsa; Fierro, Angelica; Perez, Edwin G.; Iturriaga-Vasquez, Patricio; Reyes-Parada, Miguel; Varas, Rodrigo; Fuenzalida-Uribe, Nicolas; Campusano, Jorge M.A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.
- ItemExcessive release of inorganic polyphosphate by ALS/FTD astrocytes causes non-cell-autonomous toxicity to motoneurons(2022) Arredondo, Cristian; Cefaliello, Carolina; Dyrda, Agnieszka; Jury, Nur; Martinez, Pablo; Diaz, Ivan; Amaro, Armando; Tran, Helene; Morales, Danna; Pertusa, Maria; Stoica, Lorelei; Fritz, Elsa; Corvalan, Daniela; Abarzua, Sebastian; Mendez-Ruette, Maxs; Fernandez, Paola; Rojas, Fabiola; Kumar, Meenakshi Sundaram; Aguilar, Rodrigo; Almeida, Sandra; Weiss, Alexandra; Bustos, Fernando J.; Gonzalez-Nilo, Fernando; Otero, Carolina; Tevy, Maria Florencia; Bosco, Daryl A.; Saez, Juan C.; Kahne, Thilo; Gao, Fen-Biao; Berry, James D.; Nicholson, Katharine; Sena-Esteves, Miguel; Madrid, Rodolfo; Varela, Diego; Montecino, Martin; Brown, Robert H.; van Zundert, BrigitteNon-cell-autonomous mechanisms contribute to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), in which astrocytes release unidentified factors that are toxic to motoneurons (MNs). We report here that mouse and patient iPSC-derived astrocytes with diverse ALS/FTD-linked mutations (SOD1, TARDBP, and C9ORF72) display elevated levels of intracellular inorganic polyphosphate (polyP), a ubiquitous, negatively charged biopolymer. PolyP levels are also increased in astrocyte-conditioned media (ACM) from ALS/FTD astrocytes. ACM-mediated MN death is prevented by degrading or neutralizing polyP in ALS/FTD astrocytes or ACM. Studies further reveal that postmortem familial and sporadic ALS spinal cord sections display enriched polyP staining signals and that ALS cerebrospinal fluid (CSF) exhibits increased polyP concentrations. Our in vitro results establish excessive astrocyte-derived polyP as a critical factor in non-cell-autonomous MN degeneration and a potential therapeutic target for ALS/ FTD. The CSF data indicate that polyP might serve as a new biomarker for ALS/FTD.