• La Universidad
    • Historia
    • Rectoría
    • Autoridades
    • Secretaría General
    • Pastoral UC
    • Organización
    • Hechos y cifras
    • Noticias UC
  • 2011-03-15-13-28-09
  • Facultades
    • Agronomía e Ingeniería Forestal
    • Arquitectura, Diseño y Estudios Urbanos
    • Artes
    • Ciencias Biológicas
    • Ciencias Económicas y Administrativas
    • Ciencias Sociales
    • College
    • Comunicaciones
    • Derecho
    • Educación
    • Filosofía
    • Física
    • Historia, Geografía y Ciencia Política
    • Ingeniería
    • Letras
    • Matemáticas
    • Medicina
    • Química
    • Teología
    • Sede regional Villarrica
  • 2011-03-15-13-28-09
  • Organizaciones vinculadas
  • 2011-03-15-13-28-09
  • Bibliotecas
  • 2011-03-15-13-28-09
  • Mi Portal UC
  • 2011-03-15-13-28-09
  • Correo UC
- Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log in
    Log in
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Frene, Cristian"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dendrohydrology and water resources management in south-central Chile: lessons from the Rio Imperial streamflow reconstruction
    (2018) Fernandez, Alfonso; Munoz, Ariel; Gonzalez-Reyes, Alvaro; Aguilera-Betti, Isabella; Toledo, Isadora; Puchi, Paulina; Sauchyn, David; Crespo, Sebastian; Frene, Cristian; Mundo, Ignacio; Gonzalez, Mauro; Vignola, Raffaele
  • No Thumbnail Available
    Item
    High-frequency monitoring of hydrological and biogeochemical fluxes in forested catchments of southern Chile
    (2021) Frene, Cristian; Armesto, Juan J.; Veliz, Freddy; Alfaro, Fernando D.; Weathers, Kathleen C.
    The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.
  • No Thumbnail Available
    Item
    Seasonal Partitioning of Rainfall in Second-Growth Evergreen Temperate Rainforests in Chiloe Island, Southern Chile
    (2022) Frene, Cristian; Nunez-Avila, Mariela; Castro, Ben; Armesto, Juan J.
    Rainfall partitioning in secondary forests from southern Chile is relevant in the climate change scenario, in which a 30% reduction in summer precipitation has been projected for the temperate region. Logging and degradation of old-growth forests has resulted in extensive secondary forests, over large areas of the Chiloe Archipelago as well as the mainland. These secondary forests are simple tree communities, dominated by two broad-leaved tree species, evergreen Drimys winteri and Nothofagus nitida, and have the potential to provide multiple benefits to society, including water provision, soil protection, and wood-derived products. Here, we ask how southern South American secondary rainforests modulate rainwater redistribution considering precipitation partitioning. We evaluated the seasonality of throughfall and stemflow components of precipitation, to assess ecohydrological processes for water regulation in a climate change context, where summer droughts have been more frequent in the last decade. The partitioning of gross rainfall (TP) into throughfall (TH), stemflow (ST), and canopy interception (IN) in relation to forest structure, was assessed in four forest plots (400 m(2) each) in Senda Darwin Biological Station, Chiloe. TH and ST were measured seasonally for 35 rainfall events from 2019 to 2021. IN water losses were estimated from the mass balance equation. Results indicate that the secondary rainforest intercepts 33% of TP (990 mm of the total monitored), where 59% of the volume corresponds to TH and 7% to ST, which taken together account for nearly 100% the rainwater that reaches the forest floor. Canopy IN varied seasonally from 25 to 40% of total rainfall, with maximum values occurring in the growing season (spring-summer). We found no statistical relation between ST and forest structural parameters (DBH, Basal Area). We explored the contribution of the two dominant tree species to ST and discuss the results in a climate change context. Finally, we propose to incorporate this hydrologic knowledge into adaptive forest management strategies to maximize ecosystem benefits to people. If these ecosystems were properly managed, they have the potential to provide multiple benefits to society within this century, such as water provision and soil protection in addition to carbon sequestration in biomass.

Bibliotecas - Pontificia Universidad Católica de Chile- Dirección oficinas centrales: Av. Vicuña Mackenna 4860. Santiago de Chile.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback